

Mathematics

Advanced GCE A2 7890 - 2

Advanced Subsidiary GCE AS 3890 - 2

Mark Schemes for the Units

January 2008

3890-2/7890-2/MS/R/08J

OCR (Oxford, Cambridge and RSA Examinations) is a unitary awarding body, established by the University of Cambridge Local Examinations Syndicate and the RSA Examinations Board in January 1998. OCR provides a full range of GCSE, A level, GNVQ, Key Skills and other qualifications for schools and colleges in the United Kingdom, including those previously provided by MEG and OCEAC. It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2008

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:0870 770 6622Facsimile:01223 552610E-mail:publications@ocr.org.uk

CONTENTS

Advanced GCE Mathematics (7890) Advanced GCE Pure Mathematics (7891) Advanced GCE Further Mathematics (7892)

Advanced Subsidiary GCE Mathematics (3890) Advanced Subsidiary GCE Pure Mathematics (3891) Advanced Subsidiary GCE Further Mathematics (3892)

Unit/Components	Page
4721 Core Mathematics 1	1
4722 Core Mathematics 2	7
4723 Core Mathematics 3	10
4724 Core Mathematics 4	13
4725 Further Pure Mathematics 1	16
4726 Further Pure Mathematics 2	19
4727 Further Pure Mathematics 3	22
4728 Mechanics 1	26
4729 Mechanics 2	28
4730 Mechanics 3	30
4732 Probability & Statistics 1	333
4733 Probability & Statistics 2	366
4734 Probability & Statistics 3	39
4736 Decision Mathematics 1	422
4737 Decision Mathematics 2	488
Grade Thresholds	544

January 20. Mains Cloud. com

4721 Core Mathematics 1

1	$\frac{4(3+\sqrt{7})}{(3-\sqrt{7})(3+\sqrt{7})}$	M1		Multiply top and bottom by conjugate
	$=\frac{12+4\sqrt{7}}{9-7}$	B1		9 ± 7 soi in denominator
	$=6+2\sqrt{7}$	A1	3 3	$6 + 2\sqrt{7}$
	$x^2 + y^2 = 49$	B1	1	$x^2 + y^2 = 49$
(ii)	$x^{2} + y^{2} - 6x - 10y - 30 = 0$ (x-3) ² - 9 + (y-5) ² - 25 - 30 = 0 (x-3) ² + (y-5) ² = 64 r ² = 64	M1		3^2 5^2 30 with consistent signs soi
	r = 64 $r = 8$	A1	2 3	8 cao
3	$a(x+3)^{2} + c = 3x^{2} + bx + 10$ $3(x^{2} + 6x + 9) + c = 3x^{2} + bx + 10$ $3x^{2} + 18x + 27 + c = 3x^{2} + bx + 10$	B1 B1 M1		a = 3 soi b = 18 soi $c = 10 - 9a$ or $c = 10 - \frac{b^2}{12}$
	<i>c</i> = -17	A1	4 4	<i>c</i> = -17
4(i)	<i>p</i> = -1	B1	1	<i>p</i> = -1
(ii)	$\sqrt{25k^2} = 15$ $25k^2 = 225$ $k^2 = 9$	M1		Attempt to square 15 or attempt to square root $25k^2$
	$k^2 = 9$ $k = \pm 3$	A1 A1		k = 3 $k = -3$
(iii)	$\sqrt[3]{t} = 2$ t = 8	M1	2	$\frac{1}{t^{\frac{1}{3}}} = \frac{1}{2} \text{ or } t^{\frac{1}{3}} = 2 \text{ soi}$ t = 8
		A1	2 6	<i>t</i> = 8

4721	Μ	lark Sche	eme January 20 January 20 +ve cubic
5(i)	Τ ^ν /	B1	+ve cubic
	2 ×	B1 2	+ve or -ve cubic with point of inflection at (0, 2) and no max/min points
(ii)	×	B1 B1 2	curve with correct curvature in +ve quadrant only completely correct curve
(iii)	Stretch scale factor 1.5 parallel to y-axis	B1 B1 B1 3 7	stretch factor 1.5 parallel to y-axis or in y-direction
6(i)	EITHER $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $-8 \pm \sqrt{64 - 40}$	M1	Correct method to solve quadratic
	$x = \frac{-8 \pm \sqrt{64 - 40}}{2}$ $x = \frac{-8 \pm \sqrt{24}}{2}$ $x = \frac{-8 \pm 2\sqrt{6}}{2}$	A1	$x = \frac{-8 \pm \sqrt{24}}{2}$
	$x = -4 \pm \sqrt{6}$	A1 3	$x = -4 \pm \sqrt{6}$
	OR $(x + 4)^2 - 16 + 10 = 0$ $(x + 4)^2 = 6$		
	$x + 4 = \pm \sqrt{6}$ M1 A1 $x = \pm \sqrt{6} - 4$ A1		
(ii)	10	B1 B1 B1 3	+ve parabola parabola cutting <i>y</i> -axis at (0, 10) where (0, 10) is not min/max point parabola with 2 negative roots
(iii)	$x \le -\sqrt{6} - 4, x \ge \sqrt{6} - 4$	M1 A1 ft 2	$x \le$ lower root $x \ge$ higher root (allow < , >) Fully correct answer, ft from roots found in (i)
		8	

4721	N	Mark Sche	eme January 20. The set of the s
7(i)	Gradient = $-\frac{1}{2}$	B1 1	$-\frac{1}{2}$
(ii)	$y-5 = -\frac{1}{2}(x-6)$ 2y-10 = -x+6 x+2y-16 = 0	M1 B1 ft A1 3	Equation of straight line through (6, 5) with any non-zero numerical gradient Uses gradient found in (i) in their equation of line Correct answer in correct form (integer coefficients)
(iii)	EITHER $\frac{4-x}{2} = x^2 + x + 1$ $4-x = 2x^2 + 2x + 2$	*M1	Substitute to find an equation in x (or y)
	$ \begin{array}{l} x = 2x + 2x + 2 \\ 2x^{2} + 3x - 2 = 0 \\ (2x - 1)(x + 2) = 0 \\ x = \frac{1}{2}, x = -2 \\ y = \frac{7}{4}, y = 3 \end{array} $	DM1 A1 A1 4	Correct method to solve quadratic $x = \frac{1}{2}, x = -2$ $y = \frac{7}{4}, y = 3$ SR one correct (x,y) pair www B1
	OR $y = (4-2y)^{2} + (4-2y) + 1$ * M $y = 16 - 16y + 4y^{2} + 4 - 2y + 1$ $0 = 21 - 19y + 4y^{2}$ 0 = (4y - 7)(y - 3) DM $y = \frac{7}{4}, y = 3$ A1 $x = \frac{1}{2}, x = -2$ A1		SR one correct (<i>x</i> , y) pair www B1

4721	M	lark Sche	me January 20 The stress of th
8(i)	$\frac{dy}{dx} = 3x^{2} + 2x - 1$ At stationary points, $3x^{2}+2x-1 = 0$ (3x-1)(x+1) = 0 $x = \frac{1}{3}, x = -1$ $y = \frac{76}{27}, y = 4$		Attempt to differentiate (at least one correct term) 3 correct terms Use of $\frac{dy}{dx} = 0$ Correct method to solve 3 term quadratic $x = \frac{1}{3}, x = -1$ $y = \frac{76}{27}, 4$
(ii)	$\frac{d^2 y}{dx^2} = 6x + 2$ $x = \frac{1}{3}, \frac{d^2 y}{dx^2} > 0$ $x = -1, \frac{d^2 y}{dx^2} < 0$	M1 A1	SR one correct (x,y) pair www B1 Looks at sign of $\frac{d^2 y}{dx^2}$ for at least one of their x-values or other correct method $x = \frac{1}{3}$, minimum point CWO x = -1, maximum point CWO
(iii)	$-1 < x < \frac{1}{3}$	M1 A1 2 11	Any inequality (or inequalities) involving both their x values from part (i) Correct inequality (allow \leq or \leq)

			mm. m.
4721	M	lark Scher	me January 20. Jan
9(i)	Gradient of AB = $\frac{-2-1}{-5-3}$ = $\frac{3}{8}$	B1	$\frac{3}{8} \text{oe}$
	$y - 1 = \frac{3}{8}(x - 3)$ 8 y - 8 = 3x - 9	M1	Equation of line through either A or B, any non- zero numerical gradient
	8y-8 = 3x-9 $3x-8y-1 = 0$	A1 3	Correct equation in correct form
(ii)	$\left(\frac{-5+3}{2}, \frac{-2+1}{2}\right)$		Uses $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$
	$=(-1, -\frac{1}{2})$	A1 2	$(-1, -\frac{1}{2})$
(iii)	$AC = \sqrt{(-5+3)^2 + (-2-4)^2}$	M1	Uses $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$
	$=\sqrt{2^2 + 6^2}$ $=\sqrt{40}$	A1	$\sqrt{40}$
	$=2\sqrt{10}$	A1 3	Correctly simplified surd
(iv)	Gradient of AC = $\frac{-2-4}{-5+3} = 3$	B1	3 oe
	Gradient of BC = $\frac{4 - 1}{-3 - 3} = -\frac{1}{2}$	B1	$-\frac{1}{2}$ oe
	$3 \times -\frac{1}{2} \neq -1$ so lines are not perpendicular	M1 A1 4 12	Attempts to check $m_1 \times m_2$ Correct conclusion www

4721		Mark Sche	me January 20 $x_{H}^{N_{H}}$
10(i)	$24x^2 - 3x^{-4}$	B1 B1 B1	$ \begin{array}{c} 24x^{2} \\ kx^{-4} \\ -3x^{-4} \end{array} $
	$48x + 12x^{-5}$	M1 A1 5	Attempt to differentiate their (i) Fully correct
(ii)	$8x^{3} + \frac{1}{x^{3}} = -9$ $8x^{6} + 1 = -9x^{3}$ $8x^{6} + 9x^{3} + 1 = 0$	*M1	Use a substitution to obtain a 3-term quadratic
	Let $y = x^{3}$ $8y^{2} + 9y + 1 = 0$ (8y + 1)(y + 1) = 0	DM1 A1	Correct method to solve quadratic $-\frac{1}{8}$, -1
	$y = -\frac{1}{8}, y = -1$ $x = -\frac{1}{2}, x = -1$	M1 A1 5	Attempt to cube root at least one of their y-values $-\frac{1}{2}$, -1
			SR one correct x value www B1
			SR for trial and improvement: x = -1 B1 $x = -\frac{1}{2}$ B2
		10	Justification that there are no further solutions B2

4722 Core Mathematics 2

		Mark Tot	tal
1	area of sector = $\frac{1}{2} \ge 11^2 \ge 0.7$ = 42.35 area of triangle = $\frac{1}{2} \ge 11^2 \ge 10.7$ hence area of segment = 42.35 - 38.98 = 3.37	M1 A1 M1 A1 4	Attempt sector area using $(\frac{1}{2}) r^2 \theta$ Obtain 42.35, or unsimplified equiv, soi Attempt triangle area using $\frac{1}{2}ab\sin C$ or equiv, and subtract from attempt at sector Obtain 3.37, or better
		4	
2	area $\approx \frac{1}{2} \times 2 \times \left\{2 + 2\left(\sqrt{12} + \sqrt{28}\right) + \sqrt{52}\right\}$ ≈ 26.7	M1 M1 M1 A1 4	Attempt <i>y</i> -values at $x = 1, 3, 5, 7$ only Correct trapezium rule, any <i>h</i> , for their <i>y</i> values to find area between $x = 1$ and $x = 7$ Correct <i>h</i> (soi) for their <i>y</i> values Obtain 26.7 or better (correct working only)
		4	
3	(i) $\log_a 6$	B1 1	State log _a 6 cwo
	(ii) $2\log_{10} x - 3\log_{10} y = \log_{10} x^2 - \log_{10} y^3$ = $\log_{10} \frac{x^2}{y^3}$	M1* M1dep*	Use $b \log a = \log a^b$ at least once Use $\log a - \log b = \log \frac{a}{b}$
		A1 3	
4	(i) $\frac{BD}{\sin 62} = \frac{16}{\sin 50}$ BD = 18.4 cm	M1 A1 2	Attempt to use correct sine rule in ΔBCD , or equiv. Obtain 18.4 cm
	(ii) $18.4^2 = 10^2 + 20^2 - 2 \ge 10 \ge 20 \ge 0.3998$ $\cos \theta = 0.3998$	M1 M1	Attempt to use correct cosine rule in $\triangle ABD$ Attempt to rearrange equation to find cos BAD (from $a^2 = b^2 + c^2 \pm (2)bc \cos A$)
	$\theta = 66.4^{\circ}$	A1 3	
5	$\int 12x^{\frac{1}{2}} dx = 8x^{\frac{3}{2}}$	M1 A1√ A1	Attempt to integrate Obtain correct, unsimplified, integral following their $f(x)$ Obtain $8x^{\frac{3}{2}}$, with or without + <i>c</i>
	$y = 8x^{\frac{3}{2}} + c \Longrightarrow 50 = 8 \times 4^{\frac{3}{2}} + c$	M1	Use (4, 50) to find <i>c</i>
	$\Rightarrow c = -14$ Hence $y = 8x^{\frac{3}{2}} - 14$	A1√ A1 6	Obtain $c = -14$, following $kx^{\frac{3}{2}}$ only State $y = 8x^{\frac{3}{2}} - 14$ aef, as long as single power of x
		6	

Mark Scheme

		Mark Sche	eme	Mun Mu January Tains
		Mark	Total	
(i)		B1		
	$u_2 = 9, u_3 = 11$	B1	2	Correct u_2 and u_3
(ii)	Arithmetic Progression	B1	1	Any mention of arithmetic
(iii)	$\frac{1}{2}N(14 + (N-1) \ge 2200)$	B1		Correct interpretation of sigma notation
	$N^2 + 6N$ 2200 - 0			Attempt sum of AP, and equate to 2200 Correct (unsimplified) equation
				Attempt to solve 3 term quadratic in N
		A1	5	Obtain $N = 44$ only $(N = 44$ www is full marks)
			8	
(i)	Some of the area is below the <i>x</i> -axis	B1	1	Refer to area / curve below <i>x</i> -axis or 'negative
(ii)		M1		area' Attempt integration with any one term correct
(11)		A1		Obtain $1/3x^3 - 3/2x^2$
	$\left[\frac{1}{3}x^3 - \frac{3}{2}x^2\right]_0^3 = \left(9 - \frac{27}{2}\right) - \left(0 - 0\right)$	M1		Use limits 3 (and 0) – correct order / subtraction
	$= -4\frac{1}{2}$	A1		Obtain (-)4 ¹ / ₂
	$\left[\frac{1}{3}x^3 - \frac{3}{2}x^2\right]_3^5 = \left(\frac{125}{3} - \frac{75}{2}\right) - \left(9 - \frac{27}{2}\right)$	M1		Use limits 5 and 3 – correct order / subtraction
	$=8\frac{2}{3}$	A1		Obtain $8^2/_3$ (allow 8.7 or better)
	Hence total area is $13^{1/6}$	A1	7	Obtain total area as $13^{1/6}$, or exact equiv
				SR: if no longer $\int f(x) dx$, then B1 for using
				[0, 3] and [3, 5]
			8	
(i)		M1		Attempt u_4 using ar^{n-1}
	= 5.12	A1	2	Obtain 5.12 aef
(ii)	$-10(1-0.8^{20})$	M1		Attempt use of correct sum formula for a GP
()	1 010		-	
	= 49.4	Al	2	Obtain 49.4
(iii)	$\frac{10}{1-0.8} - \frac{10(1-0.8^N)}{(1-0.8)} < 0.01$	M1		Attempt S_{∞} using $\frac{a}{1-r}$
	1 - 0.0 (1 - 0.8)	Δ1		1-r Obtain $S_{\infty} = 50$, or unsimplified equiv
	$50 - 50(1 - 0.8^{N}) < 0.01$	M1		Link $S_{\infty} - S_N$ to 0.01 and attempt to rearrange
	$0.8^{N} < 0.0002$ A.G.	A1		Show given inequality convincingly
	5 5	M1		Introduce logarithms on both sides b_{1}
N > 2			7	Use $\log a^b = b \log a$, and attempt to find N Obtain $N = 39$ only
	(ii) (iii) (i) (i) (ii) (iii)	(i) $u_2 = 9, u_3 = 11$ (ii) Arithmetic Progression (iii) $\frac{1}{2} N (14 + (N-1) \ge 2) = 2200$ $N^2 + 6N - 2200 = 0$ (N - 44)(N + 50) = 0 hence $N = 44$ (i) Some of the area is below the x-axis (ii) $\left[\frac{1}{3}x^3 - \frac{3}{2}x^2\right]_0^3 = (9 - \frac{27}{2}) - (0 - 0)$ $= -4\frac{1}{2}$ $\left[\frac{1}{3}x^3 - \frac{3}{2}x^2\right]_3^3 = (\frac{125}{3} - \frac{75}{2}) - (9 - \frac{27}{2})$ $= 8\frac{2}{3}$ Hence total area is $13^{1/6}$ (i) $u_4 = 10 \ge 0.8^3$ = 5.12 (ii) $S_{20} = \frac{10(1 - 0.8^{20})}{1 - 0.8}$ = 49.4 (iii) $\frac{10}{1 - 0.8} - \frac{10(1 - 0.8^N)}{(1 - 0.8)} < 0.01$	(i) $u_1 = 7$ $u_2 = 9, u_3 = 11$ (ii) Arithmetic Progression (iii) $\frac{1}{2}N(14 + (N-1) \times 2) = 2200$ $N^2 + 6N - 2200 = 0$ (N - 44)(N + 50) = 0 hence $N = 44$ (i) Some of the area is below the x-axis (ii) $\begin{bmatrix} \frac{1}{3}x^3 - \frac{3}{2}x^2 \end{bmatrix}_0^3 = (9 - \frac{27}{2}) - (0 - 0)$ $= -4\frac{1}{2}$ $\begin{bmatrix} \frac{1}{3}x^3 - \frac{3}{2}x^2 \end{bmatrix}_3^5 = (\frac{125}{3} - \frac{75}{2}) - (9 - \frac{27}{2})$ $= 8\frac{2}{3}$ Hence total area is $13^{1/6}$ (i) $u_4 = 10x0.8^3$ = 5.12 (ii) $S_{20} = \frac{10(1 - 0.8^{20})}{1 - 0.8}$ = 49.4 (iii) $\frac{10}{1 - 0.8} - \frac{10(1 - 0.8^{N})}{(1 - 0.8)} < 0.01$ $S_{0} - 50(1 - 0.8^{N}) < 0.01$ $0.8^{N} < 0.0002$ A.G. $log 0.8^{N} < log 0.0002$ $N \log 0.8 < log 0.0002$ M1	(i) $u_1 = 7$ $u_2 = 9, u_3 = 11$ B1 B1 B1 B1 2 (ii) Arithmetic Progression B1 1 (iii) $V_2 N (14 + (N-1) \ge 2) = 2200$ B1 M1 A1 M1 A1 $N^2 + 6N - 2200 = 0$ $(N - 44)(N + 50) = 0$ hence $N = 44$ B1 1 (ii) Some of the area is below the x-axis B1 1 (iii) $\begin{bmatrix} \frac{1}{3} x^3 - \frac{3}{2} x^2 \end{bmatrix}_0^3 = (9 - \frac{27}{2}) - (0 - 0)$ $= -4 \frac{1}{2}$ M1 A1 A1 (iii) $\begin{bmatrix} \frac{1}{3} x^3 - \frac{3}{2} x^2 \end{bmatrix}_0^3 = (9 - \frac{27}{2}) - (0 - 0)$ $= -4 \frac{1}{2}$ M1 A1 A1 (iii) $\begin{bmatrix} \frac{1}{3} x^3 - \frac{3}{2} x^2 \end{bmatrix}_0^3 = (9 - \frac{27}{2}) - (0 - 0)$ $= 8 \frac{2}{3}$ M1 A1 A1 (iii) $\begin{bmatrix} \frac{1}{3} x^3 - \frac{3}{2} x^2 \end{bmatrix}_3^3 = (\frac{125}{3} - \frac{75}{2}) - (9 - \frac{27}{2})$ $= 8 \frac{2}{3}$ M1 A1 A1 7 (iii) $U_4 = 10 \ge 0.8^3$ $= 5.12$ M1 A1 A1 2 (iii) $S_{20} = \frac{10(1 - 0.8^{20})}{1 - 0.8}$ $= 49.4$ M1 A1 2 (iiii) $\frac{10}{1 - 0.8} - \frac{10(1 - 0.8^N)}{(1 - 0.8)} < 0.01$ M1 A1 A1 A1 2 (iiii) $\frac{10}{1 - 0.8} - \frac{10(1 - 0.8^N)}{(1 - 0.8)} < 0.01$ A1 A1 A

722	Mark	Scheme	State at least 2 correct values
		Mark Tota	
(i) (ii)	(90°, 2), (-90°, -2) (a) $180 - \alpha$ (b) $-\alpha \text{ or } \alpha - 180$	B1 B1 2 B1 1 B1 1	State all 4 correct values (radians is B1 B0) State 180 - α
			(radians or unsimplified is B1B0)
(iii)	$2\sin x = 2 - 3\cos^{2} x$ $2\sin x = 2 - 3(1 - \sin^{2} x)$ $3\sin^{2} x - 2\sin x - 1 = 0$ $(3\sin x + 1)(\sin x - 1) = 0$ $\sin x = -\frac{1}{3}, \sin x = 1$ $x = -19.5^{\circ}, -161^{\circ}, 90^{\circ}$	M1 A1 A1 A1√ A1 6	Attempt use of $\cos^2 x = 1 - \sin^2 x$ Obtain $3\sin^2 x - 2\sin x - 1 = 0$ aef with no brackets Attempt to solve 3 term quadratic in sinx Obtain $x = -19.5^{\circ}$ Obtain second correct answer in range, following their x Obtain 90° (radians or extra answers is max 5 out of 6) SR: answer only (and no extras) is B1 B1 $\sqrt{B1}$
		10	
0 (i)	$(2x+5)^4 = (2x)^4 + 4(2x)^3 5 + 6(2x)^2 5^2 + 4(2x) 5^3 + 5^4$ $= 16x^4 + 160x^3 + 600x^2 + 1000x + 625$	M1* M1* A1dep* A1 4	Attempt expansion involving powers of 2x and 5 (at least 4 terms) Attempt coefficients of 1, 4, 6, 4, 1 Obtain two correct terms Obtain a fully correct expansion
(ii)	$(2x+5)^4 - (2x-5)^4 = 320x^3 + 2000x$	M1 A1 2	Identify relevant terms (and no others) by sign change oe Obtain $320x^3 + 2000x$ cwo
(iii)	$9^{4} - (-1)^{4} = 6560$ and $7360 - 800 = 6560$ A.G. $320x^{3} - 1680x + 800 = 0$ $4x^{3} - 21x + 10 = 0$	B1 M1 A1√	Confirm root, at any point Attempt complete division by $(x - 2)$ or equiv Obtain quotient of $ax^2 + 2ax + k$, where <i>a</i> is their coeff of x^3
	(x-2)(4x2 + 8x - 5) = 0 (x - 2)(2x - 1)(2x + 5) = 0 Hence x = ¹ / ₂ , x = -2 ¹ / ₂	A1 M1 A1 6	Obtain $(4x^2 + 8x - 5)$ (or multiple thereof) Attempt to solve quadratic Obtain $x = \frac{1}{2}, x = -2\frac{1}{2}$
			SR: answer only is B1 B1
		12	

4723 Core Mathematics 3

1 (i) S	Show cor	rect process for composition of functions		M1		numerical or algebraic; the right way round
C	Obtain (-	-3 and hence) -23		A1	2	
(ii)	Either:	State or imply $x^3 + 4 = 12$		B1		
		Attempt solution of equation involving x^3 Obtain 2		M1 A1	3	as far as $x = \dots$ and no other value
	<u>Or</u> :	Attempt expression for f^{-1}		M1		involving x or y; involving cube root
		Obtain $\sqrt[3]{x-4}$ or $\sqrt[3]{y-4}$		A1		
		Obtain 2		AI	(3)	and no other value
2 (i)	Obtain	correct first iterate 2.864		B 1		or greater accuracy 2.864327; condone 2 dp here and in working
		ut correct iteration process		M1		to find at least 3 iterates in all
	Obtain	2.877		A1	3	after at least 4 steps; answer required to exactly 3 dp
		$[3 \rightarrow 2.864327 \rightarrow 2.878042 \rightarrow$	2.87666	1 →	2.8	
(ii)	State or	imply $x = \sqrt[3]{31 - \frac{5}{2}x}$		B 1		
		rearrangement of equation in x		M1		involving cubing and grouping non-zero terms on LHS
	Obtain o	equation $2x^3 + 5x - 62 = 0$		A1	3	or equiv with integers
3 (a)	State co	rrect equation involving $\cos \frac{1}{2} \alpha$		B1		such as $\cos \frac{1}{2}\alpha = \frac{1}{4}$ or $\frac{1}{\cos \frac{1}{2}\alpha} = 4$
	Attemp Obtain	t to find value of α 151		M1 A1		or using correct order for the steps or greater accuracy; and no other values between 0 and 180
(b)	State or	imply $\cot \beta = \frac{1}{\tan \beta}$		B 1		
	Rearran	ge to the form $\tan \beta = k$		M1		or equivinvolving $\sin \beta$ only or
	Obtain	69.3		A1		$\cos\beta$ only; allow missing \pm
Obtain	111		A1 4	or g	great	ter accuracy; and no others between 0 and 180
4 (i)	Obtain	derivative of form $kh^5(h^6 + 16)^n$		M1		any constant <i>k</i> ; any $n < \frac{1}{2}$; allow if -4 term retained
	Obtain o	correct $3h^5(h^6+16)^{\frac{1}{2}}$		A1		or (unsimplified) equiv; no -4 now
	Substitu	te to obtain 10.7		A1	3	or greater accuracy or exact equiv
(ii)		t multn or divn using 8 and answer from (i) 8 divided by answer from (i) 0.75	M1	M1 A1 ⁻	√ 3	or greater accuracy; allow 0.75 ± 0.01 ; following their answer from (i)

min	4	
Jan	m	Noud com
Jane	4thsc.	6
		SUD.CO.
		~m

5 (a) (b)	Obtain integral of form $k(3x + 7)^{10}$ Obtain (unsimplified) $\frac{1}{10} \times \frac{1}{3} (3x + 7)^{10}$ Obtain (simplified) $\frac{1}{30} (3x + 7)^{10} + c$ State $\int \pi (\frac{1}{2\sqrt{x}})^2 dx$ Integrate to obtain $k \ln x$ Obtain $\frac{1}{4}\pi \ln x$ or $\frac{1}{4} \ln x$ or $\frac{1}{4}\pi \ln 4x$ or $\frac{1}{4} \ln 4x$ A1 Show use of the log $a - \log b$ property Obtain $\frac{1}{4}\pi \ln 2$	M1 A1 A1 3 B1 M1 A1 5	any constant k or equiv or equiv involving x ; condone no dx any constant k involving π or not; or equiv such as $k \ln 4x$ or $k \ln 2x$ not dependent on earlier marks or similarly simplified equiv
6 (i)	Either: Refer to translation and reflection State translation by 1 in negative x-direction State reflection in x-axis Or: Refer to translation and reflection State reflection in y-axis State translation by 1 in positive x-direction	B1 B1 B1 3 B1 B1 B1 (3)	in either order; allow clear equivs or equiv but now using correct terminology using correct terminology in either order; allow clear equivs with order reflection then translation clearly intended
(ii)	Show sketch with attempt at reflection of 'negative' part in <i>x</i> -axis Show (more or less) correct sketch	M1 A1 2	and curve for 0< <i>x</i> <1 unchanged with correct curvature
(iii)	Attempt correct process for finding at least one value	M1	as far as $x =$; accept decimal equivs (degrees or radians) or expressions involving $sin(\frac{1}{3}\pi)$
	Obtain $1 - \frac{1}{2}\sqrt{3}$	A1	or exact equiv
	Obtain $1 + \frac{1}{2}\sqrt{3}$	A1 3	or exact equiv; give A1A0 if extra incorrect solution(s) provided
7 (i)	Attempt use of product rule for xe^{2x} Obtain $e^{2x} + 2xe^{2x}$ Attempt use of quotient rule Obtain unsimplified $\frac{(x+k)(e^{2x}+2xe^{2x})-xe^{2x}}{(x+k)^2}$	M1 A1 M1 A1	obtaining + or equiv; maybe within QR attempt with or without product rule
	Obtain $\frac{e^{2x}(2x^2 + 2kx + k)}{(x+k)^2}$	A1 5	AG; necessary detail required
(ii)	Attempt use of discriminant	M1	or equiv
. /	Obtain $4k^2 - 8k = 0$ or equiv and hence $k = 2$	A1	-
	Attempt solution of $2x^2 + 2kx + k = 0$	M1	using their numerical value of <i>k</i> or solving in terms of <i>k</i> using correct formula

Obtain x = -1Obtain $-e^{-2}$

4723

A1 5 or exact equiv

A1

formula

B1

M1

A1 4

B1

M1

A1

A1 4

M1

A1 2

8 (i) State or imply h = 1Attempt calculation involving attempts at y values

> Obtain $a(1 + 4 \times 2 + 2 \times 4 + 4 \times 8 + 2 \times 16 + 4 \times 32 + 64)$ A1 Obtain 91

(ii) State $e^{x \ln 2}$ or $k = \ln 2$ Integrate e^{kx} to obtain $\frac{1}{k}e^{kx}$ Obtain $\frac{1}{\ln 2}(e^{6\ln 2} - e^{0})$ Simplify to obtain $\frac{63}{\ln 2}$

(iii) Equate answers to (i) and (ii)

Obtain $\frac{63}{91}$ and hence $\frac{9}{13}$

- 9 (i) State at least one of $\cos \theta \cos 60 \sin \theta \sin 60$ and $\cos \theta \cos 30 - \sin \theta \sin 30$ Attempt complete multiplication of identities of form $\pm \cos \cos \pm \sin \sin \theta$
 - Use $\cos^2 \theta + \sin^2 \theta = 1$ and $2\sin\theta\cos\theta = \sin 2\theta$ Obtain $\sqrt{3} - 2\sin 2\theta$
 - (ii) Attempt use of 22.5 in right-hand side Obtain $\sqrt{3} \sqrt{2}$
 - (iii) Obtain 10.7 Attempt correct process to find two angles Obtain 79.3
 - (iv) Indicate or imply that critical values of $\sin 2\theta$ are -1 and 1 Obtain both of $k > \sqrt{3} + 2$, $k < \sqrt{3} - 2$ Obtain complete correct solution

B1

M1	with values $\frac{1}{2}\sqrt{3}$, $\frac{1}{2}$ involved
M1 A1 4	AG; necessary detail required
M1 A1 2	or exact equiv
B1 M1 A1 3	or greater accuracy; allow ± 0.1 from values of 2θ between 0 and 180 or greater accuracy and no others between 0 and 90; allow ± 0.1
M1 A1	condoning decimal equivs, $\leq \geq$ signs

A1 3 now with exact values and unambiguously stated

addition with each of coefficients 1, 2, 4 occurring at least once; involving at least 5 *y* values

allow decimal equiv such as $e^{0.69x}$

allow if simplification in part (iii)

provided ln 2 involved other than in

AG; necessary correct detail required

any constant k or in terms of general k

any constant a

or exact equiv

power of e

4724 Core Mathematics 4

1	Method for finding magnitude of any vector Method for finding scalar prod of any 2 vectors Using $\cos\theta = \frac{\mathbf{i} - 2\mathbf{j} + 3\mathbf{k} \cdot 2\mathbf{i} + \mathbf{j} + \mathbf{k}}{ \mathbf{i} - 2\mathbf{j} + 3\mathbf{k} 2\mathbf{i} + \mathbf{j} + \mathbf{k} }$ 70.9 (70.89, 70.893) WWW; 1.24 (1.237)	M1 M1 M1 A1 4	Expect $\sqrt{14}$ and $\sqrt{6}$ Expect $1.2 + (-2)1 + 3.1 = 3$ Correct vectors only. Expect $\cos \theta = \frac{3}{\sqrt{14}\sqrt{6}}$ Condone answer to nearest degree (71)
2	(i) Correct format $\frac{A}{x+1} + \frac{B}{x+2}$ $-\frac{1}{x+1}$ or $A = -1$ $+\frac{2}{x+2}$ or $B = 2$	M1 A1 A1 3	stated or implied by answer
	(ii) $\int \frac{1}{x+1} dx = \ln(x+1) \text{ or } \ln x+1 $ or $\int \frac{1}{x+2} dx = \ln(x+2) \text{ or } \ln x+2 $ $A \ln x+1 + B \ln x+2 + c \text{ ISW}$	B1 √A1 2	Expect $-\ln x+1 + 2\ln x+2 + c$
3	Method 1 (Long division) Clear correct division method at beginning Correct method up to & including x term in quot Method 2 (Identity) Writing $(x^2 + 2x - 1)(x^2 + bx + 2) + cx + 7$ Attempt to compare cfs of x^3 or x^2 or x or const Then: b = -4 c = -1 a = 5	M1 M1 M1 M1 A1 A1 A1 5	x^{2} in quot, mult back & attempt subtraction [At subtraction stage, cf $(x^{4})= 0$] [At subtraction stage, cf $(x^{3})= 0$] Probably equated to $x^{4} - 2x^{3} - 7x^{2} + 7x + a$
4	$\frac{d}{dx}(x^2y) = x^2 \frac{dy}{dx} + 2xy$ $\frac{d}{dx}(y^3) = 3y^2 \frac{dy}{dx}$ Substitute $(x,y) = (1,1)$ and solve for $\frac{dy}{dx}$ $\frac{dy}{dx} = -\frac{11}{7} \qquad \text{WWW}$ Gradient normal $= -\frac{1}{\frac{dy}{dx}}$ $7x - 11y + 4 = 0 \qquad \text{AEF}$	B1 B1 M1 M1 A1 A1 A1 6	s.o.i.; or v.v. Solve now or at normal stage. [This dep on either/both B1 earned] Implied if grad normal = $\frac{7}{11}$ Numerical or general, awarded at any stage No fractions in final answer.

472	4 Mark S	Scheme		(indep) May be as part of $\cos \theta = \frac{a.b}{ a b }$
5	(i) Use $3i - 4j + 2k$ and $2i - j - 5k$ only Use correct method for scalar prod of any 2 vectors Obtain $6 + 4 - 10$, state = 0 & deduce perp AG	M1 M1 A1	3	(indep) May be as part of $\cos \theta = \frac{a.b}{ a b }$
	(ii) Produce 3 equations in <i>s</i> and <i>t</i> Solve 2 of the equations for <i>s</i> and <i>t</i> Obtain $(s,t) = \left(\frac{3}{5}, \frac{12}{5}\right) \operatorname{or} \left(\frac{9}{22}, \frac{18}{11}\right) \operatorname{or} \left(\frac{3}{19}, \frac{33}{19}\right)$ Substitute their values in 3 rd equation State/show inconsistency <u>& state non-parallel</u> skew	*M1 dep*M1 A1 dep*M1 A1	5	of the type $5 + 3s = 2 + 2t$, $-2 - 4s = -2 - t$ and $-2 + 2s = 7 - 5t$ <u>Or</u> Eliminate s (or t) from 2 pairs dep*M1 ($5t=12,11t=18,19t=33$) <u>or</u> ($5s=3,22s=9,19s=3$) A1,A1 State/show inconsistency <u>& state non-parallel</u> \therefore skew WWW A1
6	(i) $1 - 4ax +$ $\frac{-45}{1.2}(ax)^2$ or $\frac{-45}{1.2}a^2x^2$ or $\frac{-45}{1.2}ax^2$ $+10a^2x^2$	B1 M1 A1	3	Do not accept $\begin{pmatrix} -4\\ 2 \end{pmatrix}$ unless 10 also appears
	(ii) f.t. (their cf x) + b(their const cf) = 1 f.t. (their cf x ²) + b(their cf x) = -2 Attempt to eliminate 'b' and produce equation in 'a' Produce $6a^2 + 4a = 2$ AEF $a = \frac{1}{3}$ and $b = \frac{7}{3}$ only	√B1 √B1 M1 A1 A1	5	Expect $b-4a = 1$ Expect $10a^2 - 4ab = -2$ Or eliminate 'a' and produce equation in 'b' Or $6b^2 + 4b = 42$ AEF Made clear to be only (final) answer
7	 (i) Perform an operation to produce an equation connecting A and B (or possibly in A or in B) A = 2 B = -2 	M1 A1 A1	3	Probably substituting value of θ , or comparing coefficients of sin <i>x</i> , and/or cos <i>x</i> WW scores 3
	(ii) Write $4\sin\theta$ as $A(\sin\theta + \cos\theta) + B(\cos\theta - \sin\theta)$ and re-write integrand as $A + \frac{B(\cos\theta - \sin\theta)}{\sin\theta + \cos\theta}$ $\int A d\theta = A\theta$ $\int \frac{B(\cos\theta - \sin\theta)}{\sin\theta + \cos\theta} d\theta = B \ln(\sin\theta + \cos\theta)$ Produce $\frac{1}{4}A\pi + B \ln\sqrt{2}$ f.t. with their A,B	M1 √B1 √A2 √A1	5	A and B need not be numerical – but, if they are, they should be the values found in (i). general or numerical general or numerical Expect $\frac{1}{2}\pi - \ln 2$ (Numerical answer only)
8	(i) $\frac{dx}{dt}$ or $-kx^{\frac{1}{2}}$ or $kx^{\frac{1}{2}}$ seen $\frac{dx}{dt} = -kx^{\frac{1}{2}}$ or $\frac{dx}{dt} = kx^{\frac{1}{2}}$	M1 A1	2	<i>k</i> non-numerical; i.e. 1 side correct i.e. both sides correct
	(ii) Separate variables or invert, + attempt to integrate * Correct result for their equation after integration Subst $(t, x) = (0,2)$ into eqn containing $k \&/or c$ dep* Subst $(t, x) = (5,1)$ into eqn containing $k \& c$ dep* Subst $x = 0.5$ into eqn with their $k \& c$ subst dep* t = 8.5 (8.5355339)	M1	6	Based <u>only</u> on above eqns or $\frac{dx}{dt} = x^{\frac{1}{2}}, -x^{\frac{1}{2}}$ Other than omission of 'c' or substitute (5,1) or substitute (0,2) [1 d.p. requested in question]

4724

4724	Mark \$	Scheme		$\begin{array}{c} & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$
9	(i) Use $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$ or $\frac{\frac{dy}{dt}}{\frac{dx}{dt}}$	M1		Or conv to cartes form & att to find $\frac{dy}{dt}$ at P
	$=\frac{2t}{3t^2} \text{ or } \frac{2p}{3p^2}$	A1		
	Find eqn tgt thro (p^3, p^2) or (t^3, t^2) , their gradient	M1		Using $y - y_1 = m(x - x_1)$ or $y = mx + c$
	$3py - 2x = p^3 \qquad \text{AG}$	A1	4	Do not accept <i>t</i> here
	(ii) Substitute $(-10,7)$ into given equation *	M1		to produce a cubic equation in <i>p</i>
	Satis attempt to find at least 1 root/factor dep*			Inspection/factor theorem/rem theorem/t&i
	Any one root	Al		-1 or -4 or 5
	All 3 roots $(-1,1), (-64,16)$ and $(125,25)$	A1 A1	5	-1,-4 and 5 All 3 sets; no f.t.
	(-1,1), (-04,10) and $(123,23)$		5	All 5 Sets, 10 1.t.
10	(i) $(1-x^2)^{\frac{3}{2}} \rightarrow \cos^3\theta$	B1		May be implied by $\int \sec^2 \theta d\theta$
	$\mathrm{d}x \to \cos\theta \mathrm{d}\theta$	B1		
	$\frac{1}{\left(1-x^{2}\right)^{\frac{3}{2}}} dx \rightarrow \sec^{2}\theta \left(d\theta\right) \text{ or } \frac{1}{\cos^{2}\theta} \left(d\theta\right)$	B1		
	$\int \sec^2 \theta (d\theta) = \tan \theta$	B1		
	Attempt change of limits (expect 0 & $\frac{1}{6}\pi/30$)	M1		Use with $f(\theta)$; or re-subst & use 0 & $\frac{1}{2}$
	$\frac{1}{\sqrt{3}}$ AEF	A1	6	Obtained with no mention of 30 anywhere
-				
	(ii) Use parts with $u = \ln x$, $\frac{dv}{dx} = \frac{1}{x^2}$	*M1		obtaining a result $f(x) + /-\int g(x)(dx)$
	$-\frac{1}{x}\ln x + \int \frac{1}{x^2} (dx) \text{AEF}$	A1		Correct first stage result
	$-\frac{1}{x}\ln x - \frac{1}{x}$	A1		Correct overall result
	Limits used correctly	dep*M1		
	$\frac{2}{3} - \frac{1}{3} \ln 3$	A1	5	
	If substitution attempted in part (ii)			
	$\ln x = t$	B1		
	Reduces to $\int t e^{-t} dt$	B1		
	Parts with $u = t$, $dv = e^{-t}$	M1		
	$-\operatorname{te}^{-t}-\operatorname{e}^{-t}$	A1		
	$\frac{2}{3} - \frac{1}{3} \ln 3$	A1		
]

4725 Further Pure Mathematics 1

1	(i) 1 <u>1</u> 1	M1		For 2 other correct vertices seen, correct
	(1, -1)	A1	2	direction of shear seen For completely correct diagram, must include
	(1, 0)			scales
	(ii) $\begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}$	B1 B1	2 4	
				Each column correct
2	$\frac{a}{6}n(n+1)(2n+1)+bn$	M1 A1		Consider sum as two separate parts Correct answer a.e.f.
	$a = 6 \ b = -3$	M1 A1 A1	5 5	Compare co-efficients Obtain correct answers
3	(i) $7u^3 + 24u^2 - 3u + 2 = 0$	M1 A1	2	Use given substitution Obtain correct equation a.e.f.
	(ii) <i>EITHER</i> correct value is $-\frac{3}{7}$	M1 A1ft	2	Required expression related to new cubic Their c / their a
	OR	M1		Use $\frac{\alpha + \beta + \gamma}{\alpha\beta\gamma}$ or equivalent
	correct value is $-\frac{3}{7}$	A1	4	Obtain correct answer
4	(i) $z^* = 3 + 4i$ 21 +12i	B1 B1	2	Conjugate seen or implied Obtain correct answer
	(ii) 3 – 5i -16 – 30i	B1 B1ft B1ft	3	Correct $z - i$ or expansion of $(z - I)^2$ seen Real part correct Imaginary part correct
	(iii) $\frac{9}{25} + \frac{12}{25}i$	M1 A1 A1	3 8	Multiply by conjugate Numerator correct Denominator correct
5	(i) $\begin{pmatrix} -13\\1\\-10 \end{pmatrix}$	B1 B1	2	4 B seen or implied or 2 elements correct Obtain correct answer
	(ii) $\begin{pmatrix} 8 & 16 & -4 \\ 0 & 0 & 0 \\ 6 & 12 & -3 \end{pmatrix}$	M1 A1A1A1	4	Obtain a 3 x 3 matrix Each row (or column) correct
	(iii) (8)	M1 A1	2 8	Obtain a single value Obtain correct answer, must have matrix

25		Mark Sche	me	Horizontal straight line in 2 quadrants Through (0, 2) Straight line Through <i>Q</i> with positive slope
			1	
		B1 B1		Horizontal straight line in 2 quadrants Through (0, 2)
	2	B1		Straight line
		B1		Through <i>O</i> with positive slope
		B1	5	In 1 st quadrant only
	(ii) I	B1		State on obtain algebraically that $y = 2$
	$2\sqrt{3} + 2i$	M1		State or obtain algebraically that $y = 2$ Use suitable trigonometry
	$2\sqrt{3} + 21$	A1	3	Obtain correct answer a.e.f. decimals OK must
			8	be a complex number
	(i)	M1		Use det $\mathbf{A} = 0$
	(ii) $\mathbf{A}^{-1} = \frac{1}{a+6} \begin{pmatrix} 1 & -3 \\ 2 & a \end{pmatrix}$	A1	2	Obtain correct answer
	(ii) $\mathbf{A}^{-1} = \frac{1}{a+6} \begin{bmatrix} 1 & -5 \\ 2 \end{bmatrix}$	B1		Both diagonals correct
	(2 a)	B1ft		Divide by det A
		M1		Premultiply column by A^{-1} , no other method
	$x = \frac{4}{a+6}, y = \frac{2-a}{a+6}$			Obtain correct answers from their A^{-1}
		A1ft		
		A1ft	5 7	
	(i)	M1		Obtain next terms
	$u_2 = 4, \ u_3 = 9, \ u_4 = 16$	A1	2	All terms correct
	(ii) $u_n = n^2$	B1	1	Sensible conjecture made
	(iii)	B1		State that conjecture is true for $n = 1$ or 2
		M1		Find u_{n+1} in terms of n
		A1		Obtain $(n+1)^2$
		A1	47	Statement of Induction conclusion
	(i) $\alpha^3 + 3\alpha^2\beta + 3\alpha\beta^2 + \beta^3$	M1		Correct binomial expansion seen
		A1	2	Obtain given answer with no errors seen
	(ii) Either $\alpha + \beta = 5, \alpha\beta = 7$	B1 B1		State or use correct values
	(1) Lunci $\alpha \pm p = 3, \alpha p = 1$			
	$\alpha^3 + \beta^3 = 20$	M1		Find numeric value for $\alpha^3 + \beta^3$
	,	A1		Obtain correct answer
		M1	6	Use new sum and product correctly in
		110		quadratic expression
	$x^2 - 20x + 343 = 0$	A1ft	8	Obtain correct equation $\frac{1}{2}$
		M1 A1		Substitute $x = u^{\frac{1}{3}}$ Obtain correct answer
				Complete method for removing fractional
	$u^{\frac{2}{3}} - 5u^{\frac{1}{3}} + 7 = 0$	M2		powers
	2	A2		Obtain correct answer
	$u^{3} - 20u + 343 = 0$			

4725		Mark Sche	eme	Attempt to combine 3 fractions Obtain given answer correctly
10	(i)	M1 A1	2	Attempt to combine 3 fractions Obtain given answer correctly
	(ii) $2 + 1 - \frac{1}{2} - \frac{2}{n+1} - \frac{1}{n+2}$	M1 A1 M1 A1 M1 A1	6	Express at least first 3 terms using (i) All terms correct Express at least last 2 terms using (i) All terms correct in terms of n Show that correct terms cancel Obtain unsimplified correct answer
	(iii) $\frac{5}{2}$	B1ft	1	Obtain correct answer from their (ii)
	(iv) $\frac{2}{N+1} + \frac{1}{N+2} = \frac{7}{10}$	B1ft		Their (iii) – their (ii)
	$7N^2 - 9N - 36 = 0$ $N = 3$	M1 A1 A1	4 13	Attempt to clear fractions & solve equation, Obtain correct simplified equation Obtain only the correct answer

4726 Further Pure Mathematics 2

4726

1	(i)	Get f'(x) = $\pm \sin x/(1+\cos x)$ Get f''(x) using quotient/product rule Get f(0) = ln2, f'(0) = 0, f''(0) = $-\frac{1}{2}$	M1 M1 B1 A1	Reasonable attempt at chain at any stage Reasonable attempt at quotient/product Any one correct from correct working All three correct from correct working
	(ii)	Attempt to use Maclaurin correctly Get $\ln 2 - \frac{1}{4} x^2$	M1 A1√	Using their values in $af(0)+bf'(0)x+cf''(0)x^2$; may be implied From their values; must be quadratic
2	(i)	Clearly verify in $y = \cos^{-1}x$ Clearly verify in $y = \frac{1}{2}\sin^{-1}x$	B1 B1 SR	i.e. $x=\frac{1}{2}\sqrt{3}$, $y=\cos^{-1}(\frac{1}{2}\sqrt{3})=\frac{1}{6}\pi$, or similar Or solve $\cos y = \sin 2y$ Allow one B1 if not sufficiently clear detail
	(ii)	Write down at least one correct diff al Get gradient of -2 Get gradient of 1	M1 A1 A1	Or reasonable attempt to derive; allow ± cao cao
3	(i)	Get <i>y</i> - values of 3 and $\sqrt{28}$ Show/explain areas of two rectangles eq <i>y</i> - value x 1, and relate to <i>A</i>	B1 ual B1	Diagram may be used
	(ii)	Show $A > 0.2(\sqrt{(1+2^3)} + \sqrt{(1+2.2^3)} + \dots \\\sqrt{(1+2.83)}) = 3.87(28)$ Show $A < 0.2(\sqrt{(1+2.2^3)} + \sqrt{(1+2.4^3)} + \dots \\+\sqrt{(1+3^3)}) = 4.33(11) < 4.34$	M1 A1 M1 A1	Clear areas attempted below curve (5 values) To min. of 3 s.f. Clear areas attempted above curve (5 values) To min. of 3 s.f.
4	(i)	Correct formula with correct <i>r</i> Expand r^2 as A + Bsec θ + Csec ² θ Get C tan θ Use correct limits in their answer Limits to $1/12\pi$ + 2 ln($\sqrt{3}$) + $2\sqrt{3}/3$	M1 M1 B1 M1 A1	May be implied Allow B = 0 Must be 3 terms AEEF; simplified
	(ii)	Use $x=r \cos\theta$ and $r^2 = x^2 + y^2$ Eliminate r and θ Get $(x-2)\sqrt{x^2 + y^2} = x$	B1 M1 A1	Or derive polar form from given equation Use their definitions A.G.

M1

- 5 (i) Attempt use of product rule Clearly get x = 1
 - (ii) Explain use of tangent for next approx. B1 Tangents at successive approx. give x>1 B1
 - (iii) Attempt correct use of N-R with their derivative Get $x_2 = -1$ Get -0.6839, -0.5775, (-0.5672...)Continue until correct to 3 d.p. Get -0.567
- 6 (i) Attempt division/equate coeff. Get a = 2, b = -9Derive/quote x = 1
 - (ii) Write as quadratic in x Use $b^2 \ge 4ac$ (for real x) Get $y^2 + 14y + 169 \ge 0$ Attempt to justify positive/negative Get $(y+7)^2 + 120 \ge 0$ – true for all y

- 7 (i) Get $x(1+x^2)^{-n} \int x \cdot (-n(1+x^2)^{-n-1} \cdot 2x) dx$ Accurate use of parts Clearly get A.G.
 - (ii) Express x^2 as $(1+x^2) 1$ Get $x^2 = \frac{1}{(1+x^2)^{n+1}} - \frac{1}{(1+x^2)^{n+1}}$ Show $I_n = 2^{-n} + 2n(I_n - I_{n+1})$ Tidy to A.G.
 - (iii) See $2I_2 = 2^{-1} + I_1$ Work out $I_1 = \frac{1}{4}\pi$ Get $I_2 = \frac{1}{4} + \frac{1}{8}\pi$

- A1 Allow substitution of *x*=1
 - Not use of G.C. to show divergence Relate to crossing *x*-axis; allow diagram
- $\begin{array}{c} M1 \\ A1 \sqrt{} \\ A1 \end{array}$
 - To 3 d.p. minimum M1 May be implied
- M1 May l A1 cao
- M1 To lead to some ax+b (allow b=0 here)
- A1 B1 Must be equations
- M1 $(2x^2 x(11 + y) + (y 6) = 0)$
- M1 Allow <, >
- A1
- M1 Complete the square/sketch
- A1
- SC Attempt diff; quot./prod. rule M1 Attempt to solve dy/dx = 0 M1 Show $2x^2 - 4x + 17 = 0$ has no real roots e.g. $b^2 - 4ac < 0$ A1 Attempt to use no t.p. M1 Justify all y e.g. consider asymptotes and approaches A1
- M1 Reasonable attempt at parts
- A1
- B1 Include use of limits seen
- B1 Justified
- M1 Clear attempt to use their first line above
- A1

B1

M1 Quote/derive $\tan^{-1}x$

A1

MMM. My Marks Januar Januar Scioud. com

- 8 (i) Use correct exponential for sinh x Attempt to expand cube of this Correct cubic Clearly replace in terms of sinh
 - (ii) Replace and factorise Attempt to solve for $\sinh^2 x$ Get k > 3
 - (iii) Get $x = \sinh^{-1}c$ Replace in ln equivalent Repeat for negative root

9 (i) Get $\sinh y^{dy}/dx = 1$

Replace $\sinh y = \sqrt{(\cosh^2 y - 1)}$ Justify positive grad. to A.G.

- (ii) Get $k \cosh^{-1}2x$ Get $k=\frac{1}{2}$
- (iii) Sub. $x = k \cosh u$ Replace all $x \operatorname{to} \int k_1 \sinh^2 u \, du$ Replace as $\int k_2 (\cosh 2u - 1) \, du$ Integrate correctly Attempt to replace u with x equivalent Tidy to reasonable form

B1

- M1 Must be 4 terms
- A1
- B1 (Allow RHS \rightarrow LHS or RHS = LHS separately)
- M1 Or state $\sinh x \neq 0$
- M1 (= $\frac{1}{4}(k-3)$) or for k and use $\sinh^2 x > 0$
- A1 Not \geq
- M1 $(c=\pm \frac{1}{2})$; allow sinh x = c
- A1 $\sqrt{4}$ As $\ln(\frac{1}{2} + \sqrt{5}/4)$; their x
- A1 $\sqrt{}$ May be given as neg. of first answer (no need for x=0 implied)
- SR Use of exponential definitions Express as cubic in $e^{2x} = u$ M1 Factorise to $(u-1)(u^2-3u+1)=0$ A1 Solve for x = 0, $\frac{1}{2}\ln(\frac{3}{2} \pm \frac{\sqrt{5}}{2})$ A1
- M1 Or equivalent; allow \pm Allow use of ln equivalent with Chain Rule
- A1 B1 e.g. sketch
- M1 No need for *c*
- A1
- M1 A1
- M1 Or exponential equivalent
- A1 $\sqrt{}$ No need for *c*
- M1 In their answer
- A1 cao $(\frac{1}{2}x\sqrt{4x^2-1}) \frac{1}{4}\cosh^{-1}(2x(+c))$

4727 Further Pure Mathematics 3

1 (a) (i) e.g. $ap \neq pa \Rightarrow$ not commutative	B1 1	For correct reason and conclusion
(ii) 3	B1 1	For correct number
(iii) <i>e</i> , <i>a</i> , <i>b</i>	B1 1	For correct elements
(b) c^3 has order 2	B1	For correct order
c^4 has order 3	B1	For correct order
c^5 has order 6	B1 3	For correct order
	6	
2 $m^2 - 8m + 16 = 0$	M1	For stating and attempting to solve auxiliary eqn
$\Rightarrow m = 4$	A1	For correct solution
\Rightarrow CF $(y =) (A + Bx)e^{4x}$	A1√	For CF of correct form. f.t. from <i>m</i>
For PI try $y = px + q$	M1	For using linear expression for PI
$\Rightarrow -8p + 16(px + q) = 4x$		
$\implies p = \frac{1}{4} q = \frac{1}{8}$	A1 A1	For correct coefficients
\Rightarrow GS $y = (A + Bx)e^{4x} + \frac{1}{4}x + \frac{1}{8}$	B1√ 7	For $GS = CF + PI$. Requires $y = 1$. f.t. from CF and PI with
		2 arbitrary constants in CF and none in PI
	7	
3 (i) line segment 0.4	B1	For stating line through O OR A
3 (i) line segment <i>OA</i>	B1 2	For correct description AEF
(ii) $(\mathbf{r} - \mathbf{a}) \times (\mathbf{r} - \mathbf{b}) = \overrightarrow{AP} \times \overrightarrow{BP}$	B1	For identifying $\mathbf{r} - \mathbf{a}$ with \overrightarrow{AP} and $\mathbf{r} - \mathbf{b}$ with \overrightarrow{BP}
		Allow direction errors
$= AP BP \sin\pi \cdot \hat{\mathbf{n}} = 0$	B1 2	For using \times of 2 parallel vectors = 0
		$OR \sin \pi = 0 \text{ or } \sin 0 = 0$ in an appropriate vector expression
(iii) line through ()	B1	For stating line
(iii) line through O	B1	For stating through <i>O</i>
parallel to AB	B1 3	For stating correct direction
		SR For \overrightarrow{AB} or \overrightarrow{BA} allow B1 B0 B1
	7	
4 $(C+iS=)$ $\int_{0}^{\frac{1}{2}\pi} e^{2x} (\cos 3x + i\sin 3x) (dx)$		
$\cos 3x + i \sin 3x = e^{3ix}$	B1	For using de Moivre, seen or implied
$\int_{0}^{\frac{1}{2}\pi} e^{(2+3i)x} (dx) = \frac{1}{2+3i} \left[e^{(2+3i)x} \right]_{0}^{\frac{1}{2}\pi}$	M1* A1	For writing as a single integral in exp form For correct integration (ignore limits)
$=\frac{2-3i}{4+9}\left(e^{(2+3i)\frac{1}{2}\pi}-e^{0}\right)=\frac{2-3i}{13}\left(-ie^{\pi}-1\right)$	Al	For substituting limits correctly (unsimplified)
+ 7 () 13 ()	M1 (dep*)	(may be earned at any stage) For multiplying by complex conjugate of 2+3i
$= \left\{ \frac{1}{13} \left(-2 - 3e^{\pi} + i(3 - 2e^{\pi}) \right) \right\}$	M1 (dep*)	For equating real and/or imaginary parts
$C = -\frac{1}{13} \left(2 + 3\mathrm{e}^{\pi} \right)$	A1	For correct expression AG
$S = \frac{1}{13} \left(3 - 2 \mathrm{e}^{\pi} \right)$	A1	For correct expression
	8	

		mm w
4727	Mark Scl	heme Januar Januar Januar
5 (i) IF $e^{\int \frac{1}{x} dx} = e^{\ln x} = x$ $OR x \frac{dy}{dx} + y = x \sin 2x$	M1	heme Janua J
$\Rightarrow \frac{\mathrm{d}}{\mathrm{d}x}(xy) = x\sin 2x$	A1	For writing DE in this form (may be implied)
$\Rightarrow xy = \int x \sin 2 x (\mathrm{d} x)$	M1	For integration by parts the correct way round
$xy = -\frac{1}{2}x\cos 2x + \frac{1}{2}\int \cos 2x(dx)$	A1	For 1st term correct
$xy = -\frac{1}{2}x\cos 2x + \frac{1}{4}\sin 2x \ (+c)$	M1	For their 1st term and attempt at integration of $\frac{\cos}{\sin} kx$
$\Rightarrow y = -\frac{1}{2}\cos 2x + \frac{1}{4x}\sin 2x + \frac{c}{x}$	A1 6	For correct expression for y
(ii) $\left(\frac{1}{4}\pi, \frac{2}{\pi}\right) \Rightarrow \frac{2}{\pi} = \frac{1}{\pi} + \frac{4c}{\pi} \Rightarrow c = \frac{1}{4}$	M1	For substituting $\left(\frac{1}{4}\pi, \frac{2}{\pi}\right)$ in solution
$\Rightarrow y = -\frac{1}{2}\cos 2x + \frac{1}{4x}\sin 2x + \frac{1}{4x}$	A1 2	For correct solution. Requires $y = 1$.
(iii) $(y \approx) -\frac{1}{2}\cos 2x$	B1√ 1	For correct function AEF f.t. from (ii)
	9	
6 (i)		<i>Either coordinates or vectors may be used</i> Methods 1 and 2 may be combined, for a maximum of 5 marks
$\begin{array}{c} \text{METHOD 1} \\ \text{State } P_{1}\left(1 - 7, 2\right) + \left(1, 2 - 2\right) \end{array}$	M1	For using vector normal to plane
State $B = (-1, -7, 2) + t(1, 2, -2)$ On plane $\Rightarrow (-1+t) + 2(-7+2t) - 2(2-2t) = -1$ $\Rightarrow t = 2 \Rightarrow B = (1 - 2 - 2)$	M1 M1	For using vector normal to plane For substituting parametric form into plane For solving a linear equation in <i>t</i>
$\Rightarrow t = 2 \Rightarrow B = (1, -3, -2)$ $AB = \sqrt{2^2 + 4^2 + 4^2} OR 2\sqrt{1^2 + 2^2 + 2^2} = 6$	A1 A1 5	For correct coordinates For correct length of <i>AB</i>
METHOD 2	Ĭ	
$AB = \left \frac{-1 - 14 - 4 + 1}{\sqrt{1^2 + 2^2 + 2^2}} \right = 6$ $OR AB = \mathbf{AC} \cdot \mathbf{AB} = \frac{[6, 7, 1] \cdot [1, 2, -2]}{\sqrt{1^2 + 2^2 + 2^2}} = 6$	M1 A1	For using a correct distance formula For correct length of AB
$B = (-1, -7, 2) \pm 6 \frac{(1, 2, -2)}{\sqrt{1^2 + 2^2 + 2^2}}$	M1	For using $B = A + \text{length of } AB \times \text{unit normal}$
$B = (-1, -7, 2) \pm (2, 4, -4)$	B1	For checking whether + or – is needed (substitute into plane equation)
B = (1, -3, -2) (ii) Find vector product of any two of	A1	For correct coordinates (allow even if B0)
$\pm [6, 7, 1], \pm [6, -3, 0], \pm (0, 10, 1)$	M1	For finding vector product of two relevant vectors
Obtain $k[1, 2, -20]$	A1	For correct vector n
$\theta = \cos^{-1} \frac{\left[[1, 2, -2] \cdot [1, 2, -20] \right]}{\sqrt{1^2 + 2^2 + 2^2} \sqrt{1^2 + 2^2 + 20^2}}$	M1* M1 (dep*)	For using scalar product of two normal vectors For stating both moduli in denominator
$\theta = \cos^{-1} \frac{45}{\sqrt{9}\sqrt{405}} = 41.8^{\circ} (41.810^{\circ}, 0.72972)$	$ \begin{array}{c c} A1 \\ A1 \\ \hline 11 \end{array} $	For correct scalar product. f.t. from n For correct angle

4727	Mark	Scł	heme Januar Januar Januar For verifying $\theta = \frac{1}{8}\pi$	
			^c Cloud.cc	
7 (i) (a) $\sin \frac{6}{8} \pi = \frac{1}{\sqrt{2}}$, $\sin \frac{2}{8} \pi = \frac{1}{\sqrt{2}}$	B 1 1	1	For verifying $\theta = \frac{1}{8}\pi$	3
(b)	M1		For sketching $y = \sin 6\theta$ and $y = \sin 2\theta$ for 0 ,, θ ,, $\frac{1}{2}\pi$ <i>OR</i> any other correct method for solving $\sin 6\theta = \sin 2\theta$ for $\theta \neq k\frac{\pi}{2}$ <i>OR</i> appropriate use of symmetry <i>OR</i> appropriate use of symmetry	
$\theta = \frac{3}{8}\pi$	A1 2	2	<i>OR</i> attempt to verify a reasonable guess for θ For correct θ	
(ii) Im $(c+is)^6 = 6c^5s - 20c^3s^3 + 6cs^5$	M1 A1		For expanding $(c+is)^6$; at least 3 terms and 3 binomial coefficients needed For 3 correct terms	
$\sin 6\theta = \sin \theta \left(6c^5 - 20c^3 (1 - c^2) + 6c(1 - c^2)^2 \right)$	M1		For using $s^2 = 1 - c^2$	
$\sin 6\theta = \sin \theta \Big(32c^5 - 32c^3 + 6c \Big)$	A1		For any correct intermediate stage	
$\sin 6\theta = 2\sin\theta\cos\theta \left(16c^4 - 16c^2 + 3\right)$	A1		For obtaining this expression correctly	
$\sin 6\theta = \sin 2\theta \left(16\cos^4\theta - 16\cos^2\theta + 3\right)$		5	AG	
(iii) $16c^4 - 16c^2 + 3 = 1$	M1		For stating this equation AEF	
$\Rightarrow c^2 = \frac{2 \pm \sqrt{2}}{4}$	A1		For obtaining both values of c^2	
- sign requires larger $\theta = \frac{3}{8}\pi$	A1 3	3	For stating and justifying $\theta = \frac{3}{8}\pi$ Calculator OK if figures seen	

727	Mark	Mark Scheme Januar						
(i) Group A: $e = 6$ Group B: $e = 1$ Group C: $e = 2^0$ OR 1 Group D: $e = 1$	B1 B1 2	Scheme Januar, For any two correct identities For two other correct identities AEF for D , but not " $m = n$ "						
(ii) $EITHER$ OR $A \mid 2 \mid 4 \mid 6 \mid 8$ $2 \mid 4 \mid 8 \mid 2 \mid 6 \mid 8$ $4 \mid 8 \mid 6 \mid 4 \mid 2 \mid 1, 2, 4, 4$ $6 \mid 2 \mid 4 \mid 6 \mid 8 \mid 8$ $4 \mid 8 \mid 6 \mid 4 \mid 2 \mid 1, 2, 4, 4$ $6 \mid 2 \mid 4 \mid 6 \mid 8 \mid 8$ $8 \mid 6 \mid 2 \mid 8 \mid 4$ $B \mid 1 \mid 5 \mid 7 \mid 11 \mid 11 \mid 7 \mid 5 \mid 11 \mid 11$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1* B1*	For showing group table <i>OR</i> sufficient details of orders of elements <i>OR</i> stating cyclic / non-cyclic / Klein group (as appropriate) for one of groups <i>A</i> , <i>B</i> , <i>C</i> for another of groups <i>A</i> , <i>B</i> , <i>C</i>						
$A \not\cong B$ $B \not\cong C$ $A \cong C$	B1 (dep*) B1 (dep*) B1 (dep*) 5	For stating non-isomorphic For stating non-isomorphic For stating isomorphic For stating isomorphic						
(iii) $\frac{1+2m}{1+2n} \times \frac{1+2p}{1+2q} = \frac{1+2m+2p+4mp}{1+2n+2q+4nq}$ = $\frac{1+2(m+p+2mp)}{1+2(n+q+2nq)} = \frac{1+2r}{1+2s}$	M1* M1 (dep*) A1 A1 4	For considering product of 2 distinct elements of this form For multiplying out For simplifying to form shown For identifying as correct form, so closed						
(iv) Closure not satisfiedIdentity and inverse not satisfied	B1 B1 2	SR $\frac{\text{odd}}{\text{odd}} \times \frac{\text{odd}}{\text{odd}} = \frac{\text{odd}}{\text{odd}}$ earns full credit SR If clearly attempting to prove commutativity, allow at most M1 For stating closure For stating identity and inverse SR If associativity is stated as not satisfied, then award at most B1 B0 <i>OR</i> B0 B1						

4728 Mechanics 1

1	70 x 9.8 or 70g	B1	=686
-	70 x 0.3	B1	=21
	686 + 21	M1	+ cvs [70(9.8+0.3) gets B1B1M1]
	707 N	A1	
		[4]	
2	+/-(40 x 4 - 60 x 3)	B1	Difference of terms, accept with g
	+/-([40+60]) v	B1	Sum of terms, accept with g.
	$+/-(40 \times 4 - 60 \times 3) = +/-([40 + 60] \times 1)$	M1	Accept inclusion of g in equation.
	Speed = 0.2 ms^{-1}	A1	Not if g used. SR $40x4-60x3=[40+60]$ v;
	O	D1	v=0.2, as heavier, award 5 marks
	Same as heavier or opposite lighter/"she"	B1	"Left" requires diagram for B1 If same direction before collision award
		[5]	B0B1M1A0B0
			BUDIMIAUDU
3i		M1	Applies Pythagoras, requires +.
	$\sqrt{(12^2+15^2)}$	A1	
	19.2 N	A1	
		M1	trig and R included between X and Y
	$\tan\theta = \frac{12}{15}, \ \tan\theta = \frac{15}{12}, \ \sin\theta = \frac{12}{19.2}, \ \cos\theta = \frac{15}{19.2}$	A1	Accept cv 19.2
	Bearing = 038.7°	A1	Accept 039 or 39 or art 39 from below
		[6]	(not given if X and Y transposed)
3ii	E = 19.2	B1ft	ft cv 19.2
	Bearing = $180 + 38.7 = 219^{\circ}$	B1ft	180+cv 38.7(-360) or correct answer
		[2]	
4i	v = dx/dt	M1	Uses differentiation, may be seen in (ii)
	$v = 4t^3 - 8 \ge 2t$	A1	Accept with +c
	$v(2) = 4x2^{3} - 8x2x2$	M1	Substitutes 2 in cv v, explicit
	= 0 AG	A1	A0 if +c
	$x(2) = 2^4 - 8 x 2^2 + 16 = 0 $ AG	B1	Substitutes 2 in displacement, explicit
		[5]	
4ii	a = dv/dt	M1	Uses differentiation of v formula
	$a = 12t^2 - 16$	A1	Accept with +c
	$a(2) = 12 \times 2^2 - 16 = 32 \text{ ms}^{-2}$	A1	A0 with $+c$
		[3]	
5ia	250a = -150	M1	Values used in N2L for trailer F=+/-150
	$a = -0.6 \text{ ms}^{-2}$ AG	A1	Or -ve convincingly argued
		[2]	
5ib		M1	Applies N2L to car or car/trailer with
	900 x -0.6 = D -600 or $(900+250)x-0.6 = D -600 - 150$	A1	correct number of forces
	$\mathbf{D} = 60 \text{ N}$	A1	(including T if T=0 used later)
ا	15^2 10^2 10 (0.0)	[3]	
5ic	$15^2 = 18^2 + 2x (-0.6)s$	M1	Uses $v^2 = u^2 + 2(+/-0.6)s$ with 15, 18
	s = 82.5 m	A1	Positive, allow from $18^2 = 15^2 + 2x0.6s$
5iia		[2] M1	Applies N2L to car+trailer with F(driving)
JIIa			F(resisting), F(wt cmpt-allow without g),
			or each part, as above and T.
	(900+250)a = 980 - 600 - 150	A1	900a = 980 - 600 +/- 900x9.8sin3 - T
5iib	+/-(900+250)x9.8sin3	Al	250a = T - 150 + 250x9.8sin3
2110	$a = 0.713 \text{ ms}^{-2}$	Al	Allow (art) 0.71 from correct work
		[4]	
		M1	N2L for trailer, cv a, with correct number
	$250 \ge 0.713 = T - 150 + 250 \le 9.8 \le 10^{-1}$	A1	of forces of correct type. Or for car
			$900x0.713 = -T-600 + 900x9.8\sin 3 + 980$
	T = 200 N	A1	Anything rounding to 200 (3sf)
		[3]	
			•

4728	1	Mark Sche	me	$Uses F = \mu R$ Allow 0.333 or 0.3 recurring
6i	$4.9 = \mu x 14.7$ $\mu = 1/3$	AG	M1 A1	Uses $F = \mu R$ Allow 0.333 or 0.3 recurring
6iia	μ 1/5	110	[2] M1	3 force vertical equation
	$R + 4.9\sin 30 = 14.7$ R = 12.25 N		A1 A1	Accept 12.2 or 12.3
	F = 12.25 N F = 12.25 x 1/3		M1	Uses $F = \mu R$ with new R {may be seen in
	F = 4.08(333) N [or 49/12 N]		A1 [5]	{part b
6iib	m = 14.7/9.8 = 1.5 kg		B1	
			M1	N2L horizontally with 2 relevant forces, including 4.9sin/cos30
	$4.9\cos 30 - 4.08(333) = 1.5a$		A1	Allow cv(F) SR Award A1 if m=14.7 used
6iii	$a = 0.107 \text{ ms}^{-2}$		A2	<i>SR</i> A1 for 0.11, 0.109 or art 0.011 from m = 14.7
0111	$\mu R = (14.7 - 4.9\cos 30)/3$		[5] B1	3.49, accept 3.5
	Horizontal component of force $= 4.9 \sin 30$		B1	2.45, accept 2.4 or 2.5
	Horizontal component of force $< \Im R$		M1	Comparing two values
	Friction = 2.45 N		A1 [4]	Not 2.4 or 2.5; Explicit (M1 essential)
7i	$s = 0.5 x 1.4 x 0.8^2$		M1	Uses $s = 0.5x1.4t^2$
/1	s = 0.448 m		A1	Not 0.45
	$v = 1.4 \ge 0.8$		M1	Uses $v = 1.4t$
	$v = 1.12 \text{ ms}^{-1}$		A1	
			[4]	
7ii	$0^2 = 1.12^2 - 2 \times 9.8s$		M1	Uses $0^2 = u^2 - 2gs$ or $u^2 = 2gs$
	s = 0.064 m 0 = 1.12 - 9.8t (t = 0.114s)		A1 M1	Allow verification or $0.064=1.12t-4.9t^2$
	t = (0.114 + 0.8) = 0.914s		A1	Allow 0.91 {or $0=1.12t-4.9t^2$ and halve t
			[4]	
7iii	Scalene triangle, base on t axis		B1	NB Award A1 for 0.91 on t axis if total
	right edge steeper and terminates on axis, or cro	osses	B1	time not given in (ii)
7iv	axis at $t = 0.91$		[2] M1	Uses N2L for A or B with attempt at
/17			1411	2 forces
			A1	Either
	1.4xA = 9.8xA - 5.88 or 1.4xB = 5.88 - 9.8xB		A1	
7	A = 0.7 B = 0.525		A1	Not 0.53
7va	B = 0.525		[4] M1	Uses tension and 0.5g without particle
	$T = 0.5 \times 9.8 + 2 \times 5.88$			weights
7vb	T = 16.66 N		A1	Allow 16.7
Í I	T = 4.9 N		[2]	
t j			B1	

4729 Mechanics 2

1 (i)	12 x cos55°	M1		
	6.88 m s^{-1}	A1 2		
(ii)	12 x cos55° x 0.65	M1		
	$(\pm) 4.47 \text{ m s}^{-1}$	A1 2	0.65 x their (i)	4
2	$F = 0.2 \text{ mg } \cos 30^{\circ}$	M1	=	
		A1	$= (1.6974m) (49\sqrt{3}/50m)$	
	0.2mgcos30° x d	B1	a=0.2gcos30°+gsin30°	
	$mg x d x sin 30^{\circ}$	B1	$a = (\pm) 6.60$	
	$d=\frac{1}{2}x25/(0.2x9.8\cos 30^\circ + 9.8x\sin 30^\circ)$	M1	$0 = 5^2 - 2x6.60d$	
	1.89 m	A1 6		6
3	direction of R perp. to wall	B1		
	R at 70° to rod	B1	10° to horiz.	
	$0.8 \ge 25\cos 60^\circ = 1.6 \ge R \sin 70^\circ$	M1	moments about A	
	0.8 x 25 cos60°	A1		
	1.6 x R sin70°	A1		
	R = 6.65 N	A1 6		6

4 (i)	$45\ 000/v = kv$	M1	
	k = 50	A1 2	AG
(ii)	$45\ 000/20 - 50x20 = 1200a$	M1	
		A1	
	$a = 1.04 \text{ m s}^{-2}$	A1 3	
(iii)	$P/15 = 50x15 + 1200x9.8sin10^{\circ}$	M1	
		A1	
	41 900 W	A1 3	8

5 (i)	2mu - 3kmu = -mu + kmv	M1	
	v =	M1	attempting to make v the subject
	v = 3u(1-k)/k	A1	
			3u/k - 3u
	(0 <) k < 1	A1 4	$not \le 1$
(ii)	I = mu - 2mu	M1	or $km(3u/k - 3u + 3u)$
	3mu	A1 2	+ only
(iii)	$v = \pm 3u$	B1	
	e = (u/2 + 3u)/4u e = 7/8 or 0.875	M1	
	e = 7/8 or 0.875	A1 3	9

4729	Mark Sch	eme	January 20
7124		Unit	· · · · · · · · · · · · · · · · · · ·
6 (i)(a)	$T \cos 45^\circ = 2.94$	M1	Maximum Maxim
<u>a</u> >	T = 4.16 N	A1 2	AG
(b)	$T\cos 45^\circ + T = 0.3x1.96\omega^2$	M1	
	(res. horiz.)	Al	(Max 2/3)
(ii)(a)	$\omega = 3.47 \text{ rad s}^{-1}$	A1 3 M1	Resolving vertically
(ii)(a)	$T\cos 30^\circ + T\cos 60^\circ = 2.94$	Al	Resolving vertically
	T = 2.15 N	A1 3	
(b)	$T\cos 30^\circ + T\cos 60^\circ = 0.3v^2/1.5$	M1	calculates $\omega = 2.56$
	(res. horiz.)	A1	(Max 2/3)
	$v = 3.83 \text{ m s}^{-1}$	A1 3	11
7 (1)	$0 = (175 \sin \theta)^2$ 2.0 9.450		
7 (i)	$0 = (175\sin\theta)^2 - 2x9.8x650$	M1	
	$0 - 40.2^{\circ}$	A1 A1 A	
(ii)	$\theta = 40.2^{\circ}$	A1 3 M1	$650 = 175 \sin 55^\circ$.t - 4.9t ² etc
(ii)	Attempt at t_1 , t_2 , t_{top} or t_{total} 5.61, 23.65, 14.63, 29.26	A1	$0.00 - 1/3 \sin 35^{-}$. $1 - 4.91$ etc
	$t_2 - t_1$ or $2(t_{top} - t_1)$ or $t_{total} - 2t_1$	M1	
		A1	
	time difference $= 18.0$	A1 5	
(iii)	$v_h = 175\cos 55^\circ (100.4)$	B1	or KE $\frac{1}{2}$ mv ²
	$v_v = 175\sin 55^\circ - 9.8 \ge 5.61$	M1	(B1) PE mx9.8x650
	speed = $\sqrt{(88.4^2 + 100.4^2)}$	M1	$v = \sqrt{(175^2 - 2x9.8x650)}$
	134 m s ⁻¹	A1 4	12
8 (i)	(2x4xsinΠ/2)/3xΠ/2	M1	or 4r/3Π
U (1)	1.70	A1 2	AG
(ii)(a)	$\overline{x} xd(8x20-\Pi x4^2/2)=10x8x20d-$	M1	or $134.9\bar{x} =$
	$12x\Pi x 4^2/2xd$		64x4+38.9x12+32x18 (1298.8)
	10x8x20(d) (1600)	A1	64x4
	$(8x20-\Pi x4^2/2)$ (d) (134.9)	A1	38.9x12
	$(12x\Pi x 4^{2}/2) (d)$ (301.6)	A1	32x18
/	x = 9.63 cm	A1 5	AG
(ii)(b)	\overline{y} xd(8x20- Π x4 ² /2)=4x8x20d-	M1	or $64x4 = 42.7 + 38.9 \overline{y}$
	$1.7x\Pi x 4^2/2xd$		
	4x8x20 (d)	A1	$\overline{y} = 5.49$
	1.7d x Π x 4 ² /2 (13.6 Π)	A1M1	$135\overline{y} = 32x4 + 38.9x5.49 + 64x4$
	$\overline{y} = 4.43 \text{ cm}$	A1 4	
(iii)	20cos10° x T	B1	= or
	15cos10° x 9.63	B1	10.6 (A to com)
	15sin10° x 4.43	B1	34.7°∠comAH
	20cos10°.T=15cos10°x9.63-	M1	=15x10.6xcos34.7°
	15sin10°x4.43 (needs 3 parts)		
	T = 6.64 N	A1 5	16

4730 Mechanics 3

1	(i) $[0.5(v_x - 5) = -3.5, 0.5(v_y - 0) = 2.4]$	M1		For using $I = m(v - u)$ in x or y direction
	Component of velocity in x-direction is $-2ms^{-1}$	A1		
	Component of velocity in y-direction is 4.8ms ⁻¹	A1		
	Speed is 5.2ms ⁻¹	A1	4	AG
SR F	or candidates who obtain the speed without finding the required	componer	nts of v	
	Components of momentum after impact are -1 and 2.4 Ns			
	Hence magnitude of momentum is 2.6 Ns and required	B1		
	speed is $2.6/0.5 = 5.2 \text{ms}^{-1}$			
	(ii)	- M1		For using $I_v = m(0 - v_y)$ or
	(Π)	1011		$I_y = -y$ -component of 1^{st} impulse
	Common out in 2 (No	A 1	2	$I_y = -y$ -component of 1 mipulse
	Component is -2.4Ns	Al	2	
2	(i)	M1		For 2 term equation, each term
4	(1)	1111		representing a relevant moment
		A1		representing a relevant moment
	$50x1\sin\beta = 75x2\cos\beta$	AI		
	$\tan \beta = 3$	A1	3	AG
	(ii) Horizontal force is 75N	- B1		
	Vertical force is 50N	B1	2	
	(iii)	M1		For taking moments about A for the
				whole or for AB only
	For not more than one error in	A1		Where $\tan \alpha = 0.75$
	$Wx1\sin\alpha + 50(2\sin\alpha + 1\sin\beta) =$			
	$75(2\cos\alpha + 2\cos\beta)$ or Wx1sin α +			
	$50x2\sin \alpha = 75x2\cos \alpha$			
	0.6W + 107.4 = 167.4 or $0.6W + 60 = 120$	A1		
	W = 100	A1	4	
3	(i)	M1		For using the principle of conservation
				of momentum in the i direction
	6x4 - 3x8 = 6a + 3b (0 = 2a + b)	A1		
		M1		For using NEL
	(4+8)e = b - a $(12e = b - a)$	A1		
	Component is $4e \text{ ms}^{-1}$ to the left	Al	5	'to the left' may be implied by
	component is to the test	111		a = -4e and arrow in diagram
	(ii) $b = 8e \text{ ms}^{-1}$	B1ft		ft b = -2a or b = a + 12e
	(ii) $b = 8e \text{ ms}^{-1}$			
		M1		For using 'j component of A's velocity
	$(2)^2 (1)^2 (2)^2$			remains unchanged'
	$(8e)^2 = (4e)^2 + v^2$	A1ft		$ft b^2 = a^2 + v^2$
	v = 4	A1	4	
4	(i) $[mg - 0.49mv = ma]$	M1		For using Newton's second law
	$mv \frac{dv}{dx} = mg - 0.49 mv$	A1		
	dx	1		
	$\left[\begin{array}{c} v \left(\frac{dv}{dx} \right) \\ g = -0.49 \\ v \end{array} \right] = 1$	M1		For relevant manipulation
	$\left\lfloor \frac{1}{g} - 0.49 v \right\rfloor^{-1}$			
	$\begin{bmatrix} v & -1 & (9.8 - 0.49 v) - 9.8 \end{bmatrix}$	M1		For synthetic division of v by
	$\left[\frac{v}{9.8 - 0.49 v} \equiv \frac{-1}{0.49} \left(\frac{(9.8 - 0.49 v) - 9.8}{9.8 - 0.49 v}\right)\right]$			g - 0.49v, or equivalent
		A1	5	AG
	$\left(\frac{20}{20-v} - 1\right)\frac{dv}{dx} = 0.49$			no
	(ii)	M1		For separating the variables and
		1 1 1 1 1		
		R1		integrating
		B1		Integrating
	$\int \frac{20}{20 - v} dv = -20 \ln(20 - v)$			Integrating
	$\int \frac{20}{20 - v} dv = -20 \ln(20 - v)$ -20 ln(20 - v) -v = 0.49x (+C)	A1ft		
	$\int \frac{20}{20 - v} dv = -20 \ln(20 - v)$		5	For using $v = 0$ when $x = 0$ Accept any correct form

4730	Mark Schen	ne		For using Newton's second law with a = 0
5	(i)	M1		For using Newton's second law with $a = \frac{9}{2}$
	$mgsin30^{\circ} = 0.75mgx/1.2$	A1		0
	Extension is 0.8m	Al	3	AG
	(ii) PE loss = $mg(1.2 + 0.8)sin 30^{\circ}$ (mg)	B1		
	EE gain = $0.75 \text{mg}(0.8)^2 / (2 \text{x} 1.2)$ (0.2mg)	B1		
	$[\frac{1}{2} \text{mv}^2 = \text{mg} - 0.2\text{mg}]$	M1		For an equation with terms representing PE, KE and EE in linear combination
	Maximum speed is 3.96ms ⁻¹	A1	4	
	(iii) PE loss = $mg(1.2 + x)sin30^{\circ}$ or mgdsin30°	B1ft		ft with x or d $- 1.2$ replacing 0.8 in (ii)
	EE gain = $0.75 \text{mgx}^2/(2x1.2)$ or $0.75 \text{mg}(d - 1.2)^2/(2x1.2)$	B1ft		ft with x or $d - 1.2$ replacing 0.8 in (ii)
	$[x^2 - 1.6x - 1.92 = 0, d^2 - 4d + 1.44 = 0]$	M1		For using PE loss = EE gain to obtain a 3 term quadratic in x or d
	Displacement is 3.6m	A1	4	
	ve for parts (ii) and (iii) for candidates who use Newton's sec			
In the fo	llowing x, y and z represent displacement from equil. pos^n , ex		and dis	
	$[mv dv/dx = mgsin30^{\circ} - 0.75mg(0.8 + x)/1.2,mv dv/dy = mgsin30^{\circ} - 0.75mg/1.2,mv dv/dz = mgsin30^{\circ} - 0.75mg/1.2,$	M1		For using N2 with $a = v dv/dx$
	mv dv/dz = mgsin30° - 0.75mg(z - 1.2)/1.2] $v^2/2 = -5gx^2/16 + C$ or	A1		
	$v^2/2 = -3gx/10^4 + C \text{ or}$ $v^2/2 = gy/2 - 5gy^2/16 + C \text{ or}$			
	$v^2/2 = 5gz/4 - 5gz^2/16 + C$			
	$[C = 0.6g + 5g(-0.8)^2/16 \text{ or } C = 0.6g \text{ or}$	M1		For using $v^2(-0.8)$ or $v^2(0)$ or $v^2(1.2) = 2(g \sin 30^\circ) 1.2$ as appropriate
	$C = 0.6g - 5g(1.2/4) + 5g(1.2)^2/16$ v ² = (-5x ² /8 + 1.6)g or v ² = (y - 5y ² /8 + 1.2)g or v ² = (5z/2) -5z ² /8 - 0.9)g	A1		
	(ii) $[v_{max}^2 = 1.6g \text{ or } 0.8g - 0.4g + 1.2g \text{ or } 5g - 2.5g - 0.9g]$	M1		For using $v_{max}^2 = v^2(0)$ or $v^2(0.8)$ or $v^2(2)$ as appropriate
	Maximum speed is 3.96ms ⁻¹	A1		
	(iii) $[5x^2 - 12.8 = 0 \Rightarrow x = 1.6, 5y^2 - 8y - 9.6 = 0 \Rightarrow y = 2.4, 5y^2 - 8.6 = 0 \Rightarrow y = 2.4, 5y^2 - 8.6 = 0 \Rightarrow y = 2.4, 5y^2 - 8.6 = 0 \Rightarrow y = 2.4, 5y^2 - 8.6 = 0 \Rightarrow y = 2.4, 5y^2 - 8.6 = 0 \Rightarrow y = 2.4, 5y^2 - 8.6 = 0 \Rightarrow y = 2.4, 5y^2 - 8.6 = 0 \Rightarrow y = 2.4, 5y^2 - 8.6 = 0 \Rightarrow y = 2.4, 5y^2 - 8.6 = 0 \Rightarrow y = 2.4, 5y^2 - 8.6 = 0 \Rightarrow y = 2.4, 5y^2 - 8.6 = 0 \Rightarrow y = $	M1		For solving $v = 0$
	$5z^2 - 20z + 7.2 = 0 \Rightarrow z = 3.6$]	A 1	0	
Altornati	Displacement is 3.6m ve for parts (ii) and (iii) for candidates who use Newton's sec	A1	8 and SH	 M_analysis
Anomali	$[m\ddot{x} = mgsin30^\circ - 0.75mg(0.8 + x)/1.2 \rightarrow$	M1	ள் லா 	For using N2 with
	$\ddot{x} = -\omega^2 x; v^2 = \omega^2 (a^2 - x^2)$			$v^2 = \omega^2 (a^2 - x^2)$
	$v^2 = 5g(a^2 - x^2)/8$	Al		
		M1		For using $v^2(-0.8) = 2(gsin30^\circ)1.2$
	$v^2 = 5g(2.56 - x^2)/8$	Al		
	(ii) $[v_{max}^2 = 5g x 2.56 \div 8]$	M1		For using $v_{max}^2 = v^2(0)$
	Maximum speed is 3.96ms^{-1} (iii) [$2.56 - x^2 = 0 \Rightarrow x = 1.6$]	Al		
	(iii) $[2.56 - x^2 = 0 \rightarrow x = 1.6]$	M1		For solving $v = 0$

4730	Mark Schei	ne		For using the principle of conservation of energy
~	(i) $[1/m^2 - 1/m^2 + 2m^2]$	MI		For single of concernation
5	(i) $[\frac{1}{2}m7^2 = \frac{1}{2}mv^2 + 2mg]$	M1		For using the principle of conservation of energy
	Speed is 3.13ms ⁻¹	A1		
	$[T = mv^2/r]$	M1		For using Newton's second law
	Tension is 1.96N	A1ft	4	horizontally and $a = v^2/r$
	(ii) $[T - mg\cos\theta = mv^2/r]$	M1	4	For using Newton's second law radially
		M1		For using $T = 0$ (may be implied)
	$v^2 = -2g\cos\theta$	A1		· · · · · · · · · · · · · · · · · · ·
		M1		For using the principle of conservation of energy
	$\frac{1}{2}m7^2 = \frac{1}{2}mv^2 + mg(2 - 2\cos\theta)$	A1		
	$[-2g\cos\theta = 49 - 4g + 4g\cos\theta]$	M1		For eliminating v^2
	$6g\cos\theta = -9.8$	A1	_	May be implied by answer
	$\theta = 99.6$	A1	8	
Alternat	ive for candidates who eliminate v^2 before using T = 0. (ii) [T - mgcos θ = mv ² /r]	M1	1	For using Newton's second law radially
	(ii) $[T - \operatorname{mgcos} \theta = \operatorname{mv}^2/r]$	M1 M1		For using the principle of conservation
				of energy
	$\frac{1}{2}m7^2 = \frac{1}{2}mv^2 + mg(2 - 2\cos\theta)$	A1		
	$[T - mg\cos\theta = m(49 - 4g + 4g\cos\theta)2]$	M1		For eliminating v^2
		M1		For using $T = 0$ (may be implied)
	$-2g\cos\theta = 49 - 4g + 4g\cos\theta$	Alft		ft error in energy equation
	$6g\cos\theta = -9.8$	A1		May be implied by answer
	$\theta = 99.6$	Al	8	
1	(i) $T = 4mg(4 + x - 3.2)/3.2$	B1		
	[ma = mg - 4mg(0.8 + x)/3.2]	M1		For using Newton's second law
	$4\ddot{x} = -49x$	A1	3	AG
	(ii) Amplitude is 0.8m	B1		(from 4 + A = 4.8)
	Period is $2\pi/\omega$ s where $\omega^2 = 49/4$	B1		
		M1		String is instantaneously slack when
				shortest (4 - $A = 3.2 = L$). Thus required interval length = period.
	Slack at intervals of 1.8s	A1	4	AG
	(iii) $[ma = -mgsin\theta]$	M1	-	For using Newton's second law
				tangentially
	mL $\ddot{\theta}$ = -mgsin θ	A1		
	For using $\sin\theta \approx \theta$ for small angles and obtaining $\ddot{\theta} \approx$	A1	3	AG
	_(g/L)θ			
	(iv) $[\theta = 0.08\cos(3.5x0.25)]$ (= 0.05127)	M1		For using $\Box = \Box_0 \cos \omega t$ where $\omega^2 = 12.25$
	$\dot{\theta} = -3.5(0.08)\sin(3.5x0.25),$	M1		(may be implied by $\mathcal{G} = -\omega \Box_0 \sin\omega t$) For differentiating $\Box = \Box_{\mathcal{G}} \cos\omega t$ and
	$\dot{\theta}^2 = 12.25(0.08^2 - 0.05127.^2)$]			using $\dot{\mathcal{G}}$ or for using
				$\dot{\theta}^2 = \omega^2 (\theta_0^2 - \theta^2)$ where $\omega^2 = 12.25$
	$\dot{H} = \pm 0.215$	AI		May be implied by final answer
	$\dot{\theta} = \mp 0.215$ [v = 0.215x9.8/12.25]	A1 M1		May be implied by final answer For using $v = L\dot{\mathcal{Y}}$ and $L = g/\omega^2$

4732 Probability & Statistics 1

	-rounding only once in <u>paper</u> .		-
	5! or ${}^{5}P_{5}$	M1	
	= 120	A1 2	2-
	4! or ${}^{4}P_{4}$ seen	M1	or $2 \times 3!$ or $2! \times 3!$ or $2! \times {}^{3}P_{3}$
	4! × 2	M1dep	$2 \times 3! \times 4$
	48	A1 3	
ii	$\frac{1}{5}C_2 \text{ or } \frac{1}{5} \times \frac{1}{4} \times 2 \text{ or } 0.4 \times 0.25 \text{ or } \frac{2}{5}P_2$	M1	Allow M1 for ${}^{5}C_{2}$ or ${}^{1}/{}_{5} x {}^{1}/{}_{4}$ or ${}^{1}/{}_{20}$
	17		or $\frac{1}{5} \times \frac{1}{5} \times 2$ or $\frac{2}{25}$ oe
	$= {}^{1}/_{10}$	A1 2	
Total	4133 113	7	
2i	$\binom{4}{5}^{3} \times \binom{1}{5}$ oe	M1	Allow M1 for $(\frac{4}{5})^4 x (\frac{1}{5})$
	$= \frac{64}{625}$ or 0.102 (3 sfs)	A1 2	411 $(4/)^{3}$ $(4/)^{5}$ $(1/)^{4/)^{4}}$
ii	$\binom{4}{5}^4$ alone	N // 1	Allow $(\frac{4}{5})^3$ or $(\frac{4}{5})^5$; not $1 - (\frac{4}{5})^4$
	or $1 - (\frac{1}{5} + \frac{4}{5}x^{1}/5 + (\frac{4}{5})^{2}x^{1}/5 + (\frac{4}{5})^{3}x^{1}/5)$	M1	Allow one term omitted or wrong
	256 (0.410 (2.6)	A 1 Q	or "correct" extra
	$=\frac{256}{625}$ or 0.410 (3 sfs)	A1 2	Allow 0.41
	5	B1 1	
Total	24 20	5	24.0 24.0 24.0
3i	$r = \frac{212 - \frac{24 \times 39}{5}}{\sqrt{(130 - \frac{24^2}{5})(361 - \frac{39^2}{5})}}$		$\frac{24.8}{\sqrt{14.8\times56.8}}$ or $\frac{24.8}{\sqrt{840.64}}$ or $\frac{24.8}{3.85\times7.54}$ or $\frac{24.8}{29}$
	$r = -\frac{5}{$		11.0.00.0 1010.01
	24^2 , 39^2	B2 2	B2 for correct subst in <i>r</i>
	$\sqrt{(130 - \frac{1}{5})(361 - \frac{1}{5})}$		B1 for correct subst in any S
	R = 0.7 or (B)	B1	(A) and (B) true: B0B0
	Definition of r_s is PMCC for ranks	B1 2	dep 1 st B1
	r = 0.855	B1 2 B1	
	$r_{s} = 0.7$	B1 2	or "unchanged": B1B1
	$V_{S} = 0.7$	DI 2	Interchanged: B1
Total		6	
	$0.4 \text{ x } p = 0.12 \text{ or } {}^{0.12}_{0.4} \text{ or } {}^{12}_{40} \text{ oe}$	M1	
	p = 0.3 oe	A1 2	
ii	0.4 x (1 – their 0.3) oe $eg^{40}/_{100} \times eg^{28}/_{40}$	M1	or 0.4 – 0.12 or 0.28 or 28 seen
			Not 0.4×0.88 unless ans to (i) is 0.12
	0.28 or 28% oe	A1ft 2	
Total		4	
	Binomial stated or implied	B1	by use of tables or $0.2^a \ge 0.8^b$, $a+b=12$
	0.9806	B1 2	
	0.5583 seen	M1	add 10 corr terms or 1-(add 3 corr terms):
	1 - 0.5583	M1	M2
			or 1–0.7946 or 0.205 or 1-0.6774 or 0.323
	= 0.442 (3 sfs)	A1 3	or 1-0.3907 or 0.609
			or add 9 terms or 1-(add 2 or 4
	· · · · · · · · · · · · · · · · · · ·		terms): M1
ii	$^{15}C_4 \ge 0.3^4 \ge 0.7^{11}$	M2	$^{15}C_4 \times 0.3^{11} \times 0.7^4$: M1
Total	= 0.219 (3 sfs)	A1 3	

Note: "(3 sfs)" means "answer which rounds to ... to 3 sfs". If correct ans seen to \geq 3 sfs, ISW for later rounding Penalise over-rounding only once in paper.

			WWW. My My
4732	Mark Sc	heme	Januar Januar Sta
6i	$\sum yp = 2.3$ $\sum y^2 p = (-5.0)$	M1 A1 M1	$\geq 2 \text{ terms added } \div 3 \text{ or } \div 6 \text{ etc: } M0$
	$\Sigma y^2 p$ (= 5.9) - $(\Sigma y p)^2$ = 0.61 oe	M1 A1 5	≥ 2 terms added $= 3$ or $= 6$ etc: M0 dep +ve result (-1.3) ² ×0.2+(-0.3) ² ×0.3+0.7 ² ×0.5: M2 one term correct: M1
			Use of Z: MR, lose last A1 (2.55, 0.4475)
ii	0.2x0.25 + 0.3x0.1 or $0.05 + 0.03$ alone = 0.08 oe	M2 A1 3	M1 for one product eg correct×2: M1 or clearly ident (1,2), (2,1): M1
iii	$0.3 \times 0.1 + 0.3 \times 0.25 + 0.3 \times 0.65 + 0.25 \times 0.2 + 0.25 \times 0.5 \text{ alone}$ or 0.03 + 0.075 + 0.195 + 0.05 + 0.125 $= 0.475 \text{ or } {}^{19}\!/_{40} \text{ oe}$	M2 A1 3	M1 : any 3, 4 of these prods alone or these 5 prods plus 1 extra or repeat or (ii) + prod or 0.3 + prod or 0.25 + prod or clearly identify (1,2) (3,2) (2,2) (2,1) (2,3) M2 for $0.3 + (0.2 + 0.5) \times 0.25$ or $0.25 + (0.1 + 0.65) \times 0.3$ or $0.3 + 0.25 - 0.3 \times 0.25$
Total		11	or $1 - (0.2 + 0.5)(0.1 + 0.65)$ M1 for $(0.2 + 0.5)(0.1 + 0.65)$
7ia	Results or matches are indep Prob of winning is constant	B1 B1 2	allow "wins" indep; not "trials" indep not "success"
ib ii	No of wins (or losses) ${}^{21}C_{10}p {}^{10}q^{11} = {}^{21}C_9 p^9 q^{12}$ $\underline{12} p = q$ or $\underline{12}p(1-p)^{-1} = 1$ or similar 10 10	B1 1 M1 M1M1	or $(1 - p)$ for q & allow omit bracket or $352716 p^{10}q^{11} = 293930 p^9 q^{12}$ M1 for ${}^{12}\!/_{10}$ or ${}^{6}\!/_{5}$ or 1.2 or ${}^{5}\!/_{6}$ or 0.833 M1 for p & q cancelled correctly
	1.2p = 1 - p oe eg $p = 0.833(1-p)or 352716p = 293930(1-p)p = \frac{5}{11} or 0.455 (3 sfs) oe$	M1	or equiv equn in p or q (cancelled) nos not nec'y cancelled; not alg denom
Total	$p = 7_{11}$ of 0.433 (3 sis) de	A1 5 8	

					my 1
4732			Mark S	cheme	Mu nymansinschoud.com M1 for either LQ or UQ
8i	m = 26.5			B1	
	LQ = 22	or 21.5	or 21.75		Y. COA
	UQ = 39	40	39.5	M1	M1 for either LQ or UQ
	IQR = 17	18.5	17.75	A1 3	AT must be consistent LQ, UQ & IQR
ii	Ave or overall of	or med or "it" sir	nilar	B1f	or F med (or ave) higher or F mean less or M & F both have most in 20s
	Male spread gro	eater or M more	varied oe	B1f 2	or male range greater or more younger F or more older M
iii	Med less (or no	t) affected by ex	treme(s) or	B1 1	oe; not "anomalies"
	Mean (more) af	ffected by extrem	e(s)		ignore eg "less accurate"
iv					must consistently decode last or first
	$\frac{\text{Decode last}}{245/49} = 5$ mean = 205 $\sqrt{(9849/49 - (^{243}))}$ = 13.3 (3sfs) or sd = 13.3 or 4x	4√11		M1 A1 B1f M1 A1 B1f 6	200 + "5" dep √+ve dep M1 or ans 176; award if not +200
	$\frac{\text{Decode first}}{245 + 200 \times 49}$ $= 205$ $\Sigma x^{2} = 9849 + 400$ $\sqrt{\frac{"\Sigma x^{2}"}{49}} - "\bar{x}^{2"}$	or 10045 0×10045-49×400 or 206784			allow ⁴⁴⁵ / ₄₉ or 9.08 seen dep $\sqrt{+ve}$ Σx^2 must be: attempt at Σx^2 >9849 not involve 9849^2 not $(\Sigma x)^2 eg10045^2$, 445^2 \overline{x} must be decoded attempt, eg 9.08
	$= 13.3 \text{ or } 4\sqrt{11}$		A1		x must be decoded attempt, eg 9.08
Total	15.5 01 4 111		711	12	
9i	-	n may depend on tigating if y depe	-	B1 1	In context. Not x is controlled or indep
ii		$66.5 \times 1935/8 (= 56.5^2/8 (= 56.5^2)(= 56.$		M1 A1 M1 A1 4	Correct sub into any correct <i>b</i> formula or $a = 1935/8 - 167$ x 66.5/8 cao NB 3 sfs
iii	y = -1150 + 167 = 19 to 23			M1 A1 2	ft their eqn for M1 only
iv		lationship or corr	elation	B1 1	or weak or small corr'n. Not "agreement"
va	Reliable as <i>r</i> hi	gh	oe	B1 1	Allow without "interpolation" oe, but must include <i>r</i> high
b	Unreliable as e	.	oe	B1 1	or unreliable as gives a neg value
vi		No) because <i>r</i> nea le (or no or smal (0		B1 1	or No because Q values vary widely for pH = 8.5
Total				11 Fotel 72 m	

Total 72 marks

4733 Probability & Statistics 2

1		80 //	M1		Standardise once with Φ^{-1} , allow σ^2 , cc
1		$\frac{80-\mu}{\sigma} = \Phi^{-1}(0.95) = 1.645$	B1		
			A1		Both 1.645 (1.64, 1.65) and [0.674, 0.675], ignore signs
		$\frac{\mu - 50}{\sigma} = \Phi^{-1}(0.75) = 0.674(5)$	M1		Both equations correct apart from wrong <i>z</i> , <i>not</i> 1–1.645
		Solve simultaneously	A1		Solve two standardised equations
		$\mu = 58.7$, $\sigma = 12.9$	Al	6	μ , a.r.t 58.7
2	(i)	Let <i>R</i> denote the number of choices	M1	•	σ , a.r.t. 12.9 [not σ^2] [σ^2 : M1B1A0M1A1A0]
2	(i)	which are 500 or less.	IVI I		$B(12, \frac{5}{6})$ stated or implied, allow 501/600 etc
			M1		p^{12} or q^{12} or equivalent
		$R \sim \mathrm{B}(12, \frac{5}{6})$	A1	3	Answer, a.r.t. 0.112
		$P(R = 12) = \left(\frac{5}{6}\right)^{12} [=0.11216]$			$\left[\text{SR: } \frac{500}{600} \times \frac{499}{599} \times \frac{498}{598} \times \dots; 0.110: \text{ M1A1}\right]$
		= 0.112			[M1 for 0.910 or 0.1321 or vague number of terms]
	(ii)	Method unbiased; unrepresentative by	B1		State that method is unbiased
		chance	B1	2	Appropriate comment (e.g. "not unlikely")
					[SR: partial answer, e.g. not <u>necessarily</u> biased: B1]
3	(i)	$P(\le 1) = 0.0611$	B1		0.0611 seen
		$P(\ge 9) = 1 - P(\le 8) = 1 - 0.9597$	M1		Find $P(\ge 9)$, allow 8 or 10 [0.0866, 0.0171]
		= 0.0403	A1		0.0403 correct
		$0.0611 + 0.0403 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	M1	-	Add probabilities of tails, $or 1$ tail $\times 2$
		= 10.1%	Al	5	Answer [10.1, 10.2]% or probability
	(ii)	$P(2 \le G \le 8)$	M1		Attempt at $P(2 \le G \le 8)$, not isw, allow $1 \le G \le 9$ etc
		= 0.8944 - 0.0266 [= 0.8678]	M1	2	Po(5.5) tables, $P(\le top end) - P(\le bottom end)$
	(1)	= 0.868	Al	3	Answer, a.r.t. 0.868, allow %
4	(i)	$\hat{\mu} = \overline{y} = \frac{3296.0}{40} = 82.4$	B1 M1		Mean 82.4, c.a.o.
		10	M1 M1		Use correct formula for biased estimate Multiply by $n/(n-1)$
		$\frac{286800.4}{40}$ - 82.4 ² [= 380.25]			[SR: all in one, M2 or M0]
		$S^2 \times \frac{40}{39}$; = 390	A1	4	Variance 390, c.a.o.
	·····				
	(ii)	$\Phi\left(\frac{60 - 82.4}{\sqrt{390}}\right) = \Phi(-1.134)$	M1		Standardise, allow 390, cc or biased estimate, +/-,
		()5)0)	A 1	2	do not allow \sqrt{n}
		= 1 - 0.8716 = 0.128	Al	2	Answer in range [0.128, 0.129]
-	· /	No, distribution irrelevant	B1	1	"No" stated or implied, any valid comment
5	(i)	$H_0: \mu = 500$ where μ denotes	B2		Both hypotheses stated correctly
		H_1 : $\mu < 500$ the population mean	MI		[SR: 1 error, B1, but \overline{x} etc: B0]
		α : $z = \frac{435 - 500}{100 / \sqrt{4}} = -1.3$	M1		Standardise, use $\sqrt{4}$, can be +
		-	A1 B1		$z = -1.3$ (allow -1.29 from cc) or $\Phi(z) = 0.0968$ (.0985)
		Compare –1.282			Compare <i>z</i> & -1.282 or <i>p</i> (< 0.5) & 0.1 or equivalent
		β: $500 - 1.282 \times 100/\sqrt{4}$	M1		$500 - z \times 100/\sqrt{4}$, allow $\sqrt{2}$ errors, any Φ^{-1} , must be –
		= 435.9; compare 435	A1√;B1		CV correct, $$ on their z; 1.282 correct and compare
		Reject H ₀	M1√		Correct deduction, needs $\sqrt{4}$, $\mu = 500$, like-with-like
		Significant evidence that number of	A1√	7	Correct conclusion interpreted in context
		visitors has decreased			
	(ii)	CLT doesn't apply as <i>n</i> is small	M1	•	Correct reason ["n is small" is sufficient]
		So need to know distribution	B1	2	Refer to distribution, e.g. "if not normal, can't do it"

4733			Mar	k Sch	eme Janual Janual Janual Janual Po(3) tables, "1 –" used, e.g. 0.3528 or 0.0839 Answer 0.1847 or 0.185 Subtract 2 tabular values, or formula [e ⁻³ 3 ⁴ /4!] Answer, a.r.t. 0.168	
6 (i))	(a) $1 - 0.8153$ = 0.1847 (b) $0.8153 - 0.6472$ = 0.168	M1 A1 M1 A1	2 2	Po(3) tables, "1 –" used, e.g. 0.3528 or 0.0839 Answer 0.1847 or 0.185 Subtract 2 tabular values, or formula $[e^{-3} 3^4/4!]$ Answer, a.r.t. 0.168	N
(ii	i)	$ \begin{array}{c} -0.103 \\ \hline N(150, 150) \\ 1 - \Phi \left(\frac{165.5 - 150}{\sqrt{150}} \right) \\ = 1 - \Phi(1.266) = 0.103 \end{array} $	B1 B1 M1 A1 A1	5	Normal, mean 3×50 stated or implied Variance or SD = 3×50 , or same as μ Standardise 165 with λ , $\sqrt{\lambda}$ or λ , any or no cc $\sqrt{\lambda}$ and 165.5 Answer in range [0.102, 0.103]	
(ii	ii)	 (a) The sale of one house does not affect the sale of any others (b) The average number of houses sold in a given time interval is constant 	B1 B1	2	Relevant answer that shows evidence of correct understanding [but <i>not</i> just examples] Different reason, in context [Allow "constant rate" or "uniform" but not "number constant", "random", "singly", "events".]	
7 (i))	$\int_{0}^{2} kx dx = \left[\frac{kx^{2}}{2}\right]_{0}^{2} = 2k$ = 1 so $k = \frac{1}{2}$	M1 A1	2	Use $\int_{0}^{2} kx dx = 1$, or area of triangle Correctly obtain $k = \frac{1}{2}$ AG	
(ii	i)	y_{\uparrow} y_{\uparrow} y_{\uparrow} y_{\uparrow} y_{\downarrow} y_{\downarrow	B1 B1	2	Straight line, positive gradient, through origin Correct, some evidence of truncation, no need for vertical	
(ii	ii)	$\int_{0}^{2} \frac{1}{2} x^{2} dx = \left[\frac{1}{6} x^{3}\right]_{0}^{2} = \frac{4}{3}$	M1 A1		Use $\int_0^2 kx^2 dx$; $\frac{4}{3}$ seen or implied	
		$\int_{0}^{2} \frac{1}{2} x^{3} dx = \left[\frac{1}{8} x^{4}\right]_{0}^{2} [=2]$ $2 - \left(\frac{4}{3}\right)^{2} = \frac{2}{9}$	M1 M1 A1	5	Use $\int_0^2 kx^3 dx$; subtract their mean ²	
(iv	v)	$\begin{array}{c} 2 - \left(\frac{3}{3}\right)^{2} - \frac{3}{9} \\ \hline \\ 1 \\ 3 \end{array} \\ x$	M1 A1√	5	Answer $\frac{2}{9}$ or a.r.t. 0.222, c.a.o. Translate horizontally, allow stated, or "1, 2" on axis One unit to right, 1 and 3 indicated, nothing wrong seen, no need for vertical or emphasised zero bits [If in doubt as to \rightarrow or \downarrow , M0 in this part]	
(v	r)	$\begin{array}{c} \frac{7}{3} \\ \frac{2}{9} \end{array}$	$\begin{array}{c} B1 \\ B1 \\ \end{array}$	2	Previous mean + 1 Previous variance [If in doubt as to \rightarrow or \downarrow , B1B1 in this part]	

4733		Mar	k Sch	eme Januar Januar Januar Januar Both hypotheses correctly stated, in this form [One error (but not r, x or \overline{x}): B1]
(i)	H ₀ : $p = 0.65$ OR $p \ge 0.65$ H ₁ : $p < 0.65$ B(12, 0.65) α : P(≤ 6) = 0.2127	B2 M1 A1		Both hypotheses correctly stated, in this form [One error (but not r, x or \overline{x}): B1] B(12, 0.65) stated or implied Correct probability from tables, <i>not</i> P(= 6)
	α. $P(\le 6) = 0.2127$ Compare 0.10β:Critical region $\le 5; 6 > 5$ Probability 0.0846	B1 B1 A1		Explicit comparison with 0.10 Critical region ≤ 5 or ≤ 6 or $\{\leq 4\} \cap \{\geq 11\}$ & compare 6 Correct probability
	Do not reject H_0 Insufficient evidence that proportion of population in favour is not at least 65%	$ \begin{array}{c c} M1 \\ M1 \\ A1 \\ \end{array} $	7	Correct comparison and conclusion, needs correct distribution, correct tail, like-with-like Interpret in context, e.g. "consistent with claim" [SR: N(7.8, 2.73): can get B2M1A0B1M0: 4 ex 7]
(ii)	Insufficient evidence to reject claim; test and p/q symmetric	B1√ B1	2	Same conclusion as for part (i), don't need context Valid relevant reason, e.g. "same as (i)"
(iii)	$R \sim B(2n, 0.65), P(R \le n) > 0.15$ B(18, 0.65), $p = 0.1391$ Therefore $n = 9$	M1 A1 A1 A1	4	B(2n, 0.65), P($R \le n$) > 0.15 stated or implied Any probability in list below seen p = 0.1391 picked out (i.e., not just in a list of > 2) Final answer $n = 9$ only [SR <n: <math="" m1a0,="">n = 4, 0.1061 A1A0] [SR 2-tail: M1A1A0A1 for 15 or 14] [SR: 9 only, no working: M1A1] [MR B(12, 0.35): M1A0, $n = 4$, 0.1061 A1A0]</n:>
				$\begin{array}{cccccccccccccccccccccccccccccccccccc$

January 200. Nainscioud. com

4734 Probability & Statistics 3

1 (i) (ii)	$s^{2} = 0.00356/80 + 0.00340/100$ = 7.85 × 10 ⁻⁵	M1 A1 2	Sum of variances Or pooled, giving 7.81×10 ⁻⁵
	$(1.36-1.24) \pm zs$ z=1.96 (0.103, 0.137)	M1 B1 A1 3	Must be <i>s</i> , accept <i>t</i>
(iii)	Not necessary since sample sizes are large	B1 1 (6)	Or equivalent. Nothing wrong
2 (i)	Use $\overline{x} \pm z \frac{\sigma}{\sqrt{n}}$	M1	
	$\overline{x} = 337.5 / 20$ z = 2.326 (14.9,18.9)	B1 B1 A1 4	3 or 4 SF
(ii)	1- 0.98 ³ 0.0588	M1 A1 2	Use B(3,0.02) or B(3,0.98) for M.
(iii)	Unbiased estimate of σ^2 required t – distribution used to obtain CV	B1 2 (9)	
3 (i)	$H_0: p_W = p_N, H_1: p_W > p_N$	B1 2 (8) B1	For both hypotheses. Or π .
	Pooled $\hat{p} = \frac{71+73}{80+90}$ (= $\frac{144}{170}$)	B1	SR: from $p_1q_1/n_1 + p_2q_2/n_2 = 0.00295$ z = 1.406 B1M1A1M1A1 Max 5/7
	$s^{2} = (144/170)(26/170)(1/80+1/90)$ z = (71/80-73/90)/s	B1 M1	
	=1.381	A1	If no explicit comparison and correct conclusion then M1A0.
	1.381 < 1.645 Do not reject H ₀ , there is insufficient evidence that the proportion of on-time Western trains	M1	Or use P-value or CR In context, not too assertive
(:)	exceeds the proportion of on-time Northern trains	A1 7	
(ii)	$\frac{1}{s^2 = 71 \times 9/80^3 + 73 \times 17/90^3} = 0.00295$	 M1 A1 2 (9)	AEF Allow one error Accept 0.0029
4 (i)	Use $L - S_1 - S_2$ $\mu = 0.7$ $\sigma^2 = 0.58^2 + 0.31^2 + 0.31^2$	M1 B1 M1	Or equivalent, or implied
	= 0.5286	Al	May be implied later
	(1-0.7)/σ 0.340	M1 A1 6	Correct numerator
(ii)	Use $L - 2S$ with $\mu = 0.7$ $\sigma^2 = 0.58^2 + 4(0.31)^2$ $- 0.7/\sigma$	 M*1 B1 Dep*M1	M0 if as (i) unless correct Accept +
	- 0.824(5) 0.2048	A1 A1 A1 5 (11)	0.205 (3SF)

			$\label{eq:linear} \begin{array}{c} & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & &$
4734		Mark Scheme	January 200 Nathsch
	Population of differences is normal	B1	Not "independent"
	$H_0: \mu_A = \mu_B$, $H_1: \mu_A < \mu_B$ where μ_A and μ_B denote the population means	B1	$Or \ \mu_D = 0, \ \mu_D > 0$
	$\overline{x}_D = 3.222$	B1	From formula ,or B2 from calculator
	$s_D = 5.019$	M1A1	
	t = 3.222/(5.019/3)	M1	Accept 1.93. M1A0 if <i>t</i> = - 1.926
	=1.926	A1	
I	CV = 1.860	B1	
	1.926 > 1.860	M1	
	Reject H_0 , there is evidence that brand	A 1 10	
4	A takes less time than brand B	A1 10	
(ii) .	One valid reason	B1 1 (11)	Data are clearly paired
	one vanu reason		Data not independent
× /	37×58/120	M1	Or equivalent
	17.883 , 17.88 AG	A1 2	
	H ₀ : Gender and shade are independent	B1	
	(H ₁ :are not independent		
	$3.02^{2}(14.02^{1}+14.98^{-1}) +$	M1	At least two correct
•	$6.12^{2}(17.88^{1}+19.12^{-1})$	A1	All correct
	$+3.1^{2}(26.1^{-1}+27.9^{-1})$ =6.03	A1	
	=6.03 EITHER: CV 5.991	B1	
	6.03 > 5.991, reject H ₀ and accept that	M1	
	gender and shade are not independent	$A1\sqrt{7}$	Ft X^2 . Can be assertive.
	OR: $P(\chi^2 > 6.03) = 0.049$	B1	
	< 0.05, reject H ₀ and accept that	M1	
	gender and shade are not independent	A1√	$Ft X^2$
(iii)	G_1 G_2 G_3		
	O 29 37 54	M1	For combining
	E 40 40 40	A1	
	121/40 + 9/40+196/40	M1	
	= 8.15	A1	
	Using $df = 2$	M1	
	2.5% tables, 1.7% calculator	A1 6 (15)	

			Mun m M
4734		Mark Scheme	January 200 Jans
7(i)	F(t) = $\begin{cases} 0 & t \le 0, \\ t^4 & 0 < t \le 1, \\ 1 & \text{otherwise.} \end{cases}$	B1 B1 2	For t ⁴ For rest
(ii)	$G(h) = P(H \le h)$ = P(T \ge 1/h^{1/4}) = 1 - F((1/h^{1/4})) = 1 - 1/h g(h) = G'(h) = 1/h^2 h \ge 1, (0 otherwise)	 M1 A1 A1 A1 M1 A1 B1 7	Accept < With attempt at differentiation Only from G obtained correctly
(iii)	EITHER: $\int_{1}^{\infty} (h^{-2} + 2h^{-3}) dh$ $= \left[-h^{-1} - h^{-2} \right]_{1}^{\infty}$ $= 2$ $OR: = 1 + 2 \int_{1}^{\infty} \frac{1}{h^{3}} dh$	M1 B1 A1 M1	For integrating $(1+2h^{-1})g(x)$, with limits from (ii) Limits not required
	$= 1 + 2 \left[-\frac{1}{2h^2} \right]_1^{\infty}$ = 2 OR: E(1+2T ⁴)=1 + $\int_0^1 8t^7 dt$ = 1+[t ⁸] = 2	B1 A1 M1 B1 A1 3 (12)	Limits not required

January 2008 Mainscloud.com

4736 Decision Mathematics 1

1	(i)	5 2 4 3 8 Bin 1: 5 2 3 Bin 2: 4 Bin 3: 8	M1 A1	First bin correct All correct in three bins	[2]
	(ii)	8 5 4 3 2 Bin 1: 8 2 Bin 2: 5 4 Bin 3: 3	M1 A1	First bin correct All correct in three bins	[2]
	(iii)	The heaviest box is originally at the bottom of the stack	B1	Referring to the physical act of sorting the weights into decreasing order	[1]
	(iv)	Bins in any order and boxes in any orderBin 1:8Bin 2:5352Bin 3:424	B1	Any valid packing into three bins of capacity 8 kg.	[1]
				Total =	6

2 (i)				
	4 5 6	M1	A connected graph with nine vertices labelled 1 to 9	
		A1	Correct graph	
	7 8 9 4 moves	B1	Stating 4	[3]
(ii)	Neither	M1	'Neither', together with an attempt at a reason	
	It has four odd nodes The nodes 2, 4, 6, 8 each have three arcs joined to them whereas an Eulerian graph has no odd nodes and a semi- Eulerian graph has exactly two odd nodes	A1	A correct reference to the number of odd nodes for this graph. Be careful about whether 'odd' refers to the parity or the value. However, just defining Eulerian and semi- Eulerian, without reference to this graph,	
			is not enough Total =	[2] 5

4736	Mark S	Scheme	January 2008	nati
		AN	SWERED ON INSERT	
3 (i)	AD = 16 $CD = 18$ $CF = 21$ $AC = 23$ $DF = 34$ $BE = 35$ C A B F G	M1 A1	SWERED ON INSERT Using Kruskal: Not selecting <i>AC</i> and <i>DF</i> Selecting correct arcs in list, or implied (16+18+21+35+46+50, in this order with no others, can imply M1, A1)	
	$BE = 35 \qquad F \checkmark G$ $BG = 46$ $AB = 50$ $EG = 55$ $FG = 58$ $F \checkmark G$ $F \land G$ $F \land G$ $F \land G$	M1 A1	Drawing a spanning tree for these six vertices Correct (minimum) spanning tree drawn	
	$\frac{AE}{AF} = \frac{80}{100}$	B1	186 (cao)	[5]
(ii)	Delete <i>BG</i> from spanning tree $186 - 46 = 140$	B1	Correct working for wrong vertex deleted can score B1, M1, A0 Weight of MST on reduced network (ft from part (i)	
	Two shortest arcs from G are BG and EG 140 + 46 + 55 = 241 Lower bound = 241	M1 A1	Adding two shortest arcs to MST 241 (cao)	[3]
(iii)	$A-D-C-F-G-\dots$ or $16+18+21+58+\dots$ A-D-C-F-G-B-E-A	M1 A1	Using nearest neighbour Correct closed tour listed, not just weights added	
	Upper bound = 274	B1	274 (cao)	[3]

January 2008

'36	Mark Sche	eme	January 2008 Quickest journey / least travel time or equivalent	Mymathsu
(ii)	The quickest journey time from Jenny's house to the meeting venue	B1	Quickest journey / least travel time or equivalent	[1]
(iii)	Does not allow for waiting for connections There may be delays at the airport She may not want to fly because of the 'carbon footprint' She may want to choose the cheapest route rather than the quickest route She may not like flying She may want to see her friend She may want to break the journey overnight	B1 B1	Any reasonable suggestion for why she may not want to use the drive/fly/underground route or why she may want to use a different route Any second reasonable suggestion	[2]

5	(i)	$x = \text{area of wall to be panelled } (m^2)$ y = area to be painted z = area to be covered with pinboard	B1 B1	Reference to area or m^2 (at least once) Identifying x as panelling, y as paint and z as pinboard, in any way	[2]
	(ii)	$Cost \le \pounds 150$ $\Rightarrow 8x + 4y + 10z \le 150$ $\Rightarrow 4x + 2y + 5z \le 75 \text{ (given)}$	B1 B1	Use of word 'cost' or equivalent $8x + 4y + 10z \le 150$ seen or explicitly referred to	[2]
	(iii)	(Minimise $P =$) $15x + 30y + 20z$	B1 ft	Any positive multiple of this eg $3x + 6y + 4z$ or $\frac{1}{4}x + \frac{1}{2}y + \frac{1}{3}z$	[1]
	(iv)	(Minimise $P = 480 + - 5x + 10y$ Subject to $x + 3y \ge 45$ $x \ge 10$ $y \ge 0$ $x + y \le 22$	B1 ft B1 B1	Any positive multiple of this, eg $2y-x(+c)$ - or maximise a negative multiple Any equivalent simplified form $x \ge 10$ may be implied $y \ge 0$ may be implied $x + y \le 22$, any equivalent simplified form	[3]
	(v)	y 14 12 10 10 12 14 10 12 14	M1 M1 M1 A1 X	ANSWERED ON GRAPH PAPER x = 10 drawn accurately with a sensible scale x + y = 22 drawn accurately with a sensible scale Their $x + 3y = 45$ drawn accurately with a sensible scale Shading correct or identification of the feasible region (triangle with $(10, 11\frac{2}{3}), (10, 12)$ and $(10\frac{1}{2}, 11\frac{1}{2})$ as vertices)	[4]
				Total =	12

4736	Mark Sche	me	Rows and columns may be in any order Objective row with -25, -14, 32	this clou
(i)	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	B1 B1	Rows and columns may be in any order Objective row with -25, -14, 32 Constraint rows correct (condone omission of <i>P</i> column)	[2]
(ii)	 x column has a negative value in objective row Cannot use y column since it has negative entries in all the other rows 	B1 B1	'negative in top row', '-25', or similar 'most negative in top row' \Rightarrow bod B1 Correct reason for not choosing y column	
	$24 \div 6 = 4$ 15 ÷ 5 = 3 Least non-negative ratio is 3, so pivot on 5	B1	Both divisions seen and correct choice made (or both divisions seen and correct choice implied from pivoting)	[3]
(iii	$\frac{1}{0} \frac{0}{-29} \frac{82}{82} \frac{0}{0} \frac{5}{5} \frac{75}{75}$ $\frac{0}{0} \frac{0}{-0.4} \frac{-9}{-9} \frac{1}{1} \frac{-1.2}{-1.2} \frac{6}{0}$ $\frac{0}{1} \frac{1}{-0.6} \frac{2}{2} \frac{0}{0.2} \frac{3}{3}$ New row $3 = \frac{1}{5}$ row 3 New row $1 = row 1 + 25 \times new row 3$ oe New row $2 = row 2 - 6 \times new row 3$ oe x = 3, y = 0, z = 0 P = 75	M1 A1 B1 B1 B1 B1 B1 ft B1 ft	Follow through their sensible tableau (with two slack variable columns) and pivot Pivot row correct (no numerical errors) Other rows correct (no numerical errors) Calculation for pivot row Calculation for objective row Calculation for objective row Calculation for other row x, y and z from their tableau P from their tableau, provided $P \ge 0$	[2] [3] [2]
(iv	 Problem is unbounded No limit to how big y (and hence P) can be Only negative in objective row is y column, but all entries in this column are negative 	B1	Any one of these, or equivalent. If described in terms of pivot choices, must be complete and convincing	[1]

4736					Mark Sch	eme	January 2008 For reference only	naths
	$F = N \div H$ $G = INTO$ $H = B \times O$ $C = N - H$ $N = G$	(F) G					For reference only	
(i)	F 2.5 1 0.5	G 2 1 0	H 4 2 0	C 1 0 1	N 2 1 0	M1 A1 A1 A1 A1	A reasonable attempt at first pass (presented in any form) F = 2.5 and $G = 2H = 4$ (or double their <i>G</i> value) and $C = 5$ – their <i>H</i> F, G, H, C and <i>N</i> correct for second pass (ft their <i>N</i> value) F, G, H, C and <i>N</i> correct for third pass (ft their <i>N</i> value)	[5]
(ii)	<i>F</i> -2.5 -1.5 -1 -0.5 -0.5	G -3 -2 -1 -1 -1	H -6 -4 -2 -2 -2	C 1 0 1 1	N -3 -2 -1 -1 -1	M1 M1 d A1	A reasonable attempt First pass correct (or implied) Reaching two lines with the same value for <i>G</i> If described in words only, then M1 for a correct statement; M1 d for all correct statements (sufficient to guarantee result), and A1 for convincingly correct explanation of how they know these to be true and why the result follows	
	Does not	termina	te			B1	Saying 'does not stop', or equivalent	[4]
(iii)		alue is tl		git, the th	N 3 0 V, the hird value is	M1 A1 M1 A1	First pass correct All correct Outputs are digits of <i>N</i> In reverse order	[4]

4737 Decision Mathematics 2

4737	Mark S	Scheme	January 20	Pathsch
(iv) $\begin{array}{c c} A \\ B \\ C \\ L \\ E \\ F \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Www.myrr January 20	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1	Or reduce columns 1 4 3 0 4 1 3 2 1 3 0 5 2 0 2 3 4 5 3 3 0 2 1 5 3 5 3 0 2 1 5 3 5 3 0 2 1 5 3 5 3 0 2 1 5 3 5 3 0 2 1 Then reduce rows 1 4 3 0 4 1 3 2 1 3 0 5 3 0 5 3 3 0 2 1 5 3 2 1 0 3 5 3 0 2 1 5 3 0 2 1 3 5 3 0 2 1 5 3 0 2 1 3 <td></td>	
Au	3 3 0 2 1 5 3 5 3 2 1 0 3 5 3 0 2 1 Cross out 0's using 5 linesAugment by 1 to get a complete allocation	A1 M1 A1	 cao with rows reduced first Follow through their reasonable reduced cost matrix if possible Any valid choice of lines (max for theirs) Augmenting appropriately Augmentation completely correct (ft) 	[3]
A =	= 1 $B = 5$ $C = 2$ $D = 3$ $E = 6$ $F = 4$ nie	B1 B1	This allocation <u>listed</u> in any form, cao Arnie named (not just <i>A</i>), cao	[2]

47	737				Mark	k Scheme January 20				
(i)	6					B1	6	[1]		
(ii)	The total number of points for each combination is 10, subtracting 5 from each entry gives a total of 0 for each entry.					B1	Total = 10 changes to total = 0 or subtracting 5 gives total = 0 for every cell	[1]		
(iii)	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$				min -1 -3	M1	Row for Sanjiv is optional Writing out pay-off matrix for zero-sum game (or explaining that the given matrix will give the same play safes since each entry is a constant 5 more than in the zero-sum game			
	Play-safe fo Play-safe fo					B1 A1	P, cao, row minima need not be seen M, cao, col maxima need not be seen Accept any reasonable identification			
	Not stable since $-1 \neq 0$					B1	Any equivalent reasoning Their row maximin ≠ their col minimax			
	If Team R j choose Liar		then Te	am C shou	ld	B1	'Liam' or 'L', or follow through their choice of play safe for Team R	[5]		
(iv)	If the entry for row P column L is increased the col max for Liam is at least as big as at present so column M is still the column minimax and the row min for Philip is at least as big as at present so row P is still the row maximin.				as at n s big as	M1 A1	Using either original values or augmented values. A reasonable explanation of either part A correct explanation of both (in play safe row and not in play safe column, without further explanation \Rightarrow M1, A0)	[2]		
(v)	Sanjiv's scores are dominated by Philip's. Sanjiv scores fewer hits than Philip <u>for each</u> <u>choice</u> of captains from Team C					B1	Identifying dominance by <i>P</i> and explaining it or showing the three comparisons	[1]		
(vi)	4p + 6(1-p) = 6-2p	Ĩ				M1 A1	Using original or reduced values correctly Achieving given expression from valid working			
	N: $5p + 5(1)$ N: $6p + 3(1)$	M: $5p + 5(1-p)$ or $0(p) + 0(1-p) + 5 = 5$ N: $6p + 3(1-p)$ or $1p + -2(1-p) + 5 = 3p+3$		B1	5 and $3p+3$, cao					

47	737			Marl	k Schem	e January 20 MAY BE ON GRAPH PAPER	ANA ANSUIS SCIOUS
ii)	E 6 4 2 0 3p+3=6-2p= Expect at least 4		a 0.7 0.4		M1 A1 B1	Appropriate scales and line E = 6-2 <i>p</i> drawn correctly (Their) other lines drawn correctly Solving for their <i>p</i> or from graph	[2]
	Expect at least 4	F.8 mits			B1	Their E for chosen value of <i>p</i> or from graph	[2]
						Total =	17
i)	Stage State 0 1 1 1 2 0	Action 0 0 0 0 0 0 1 1	Working 1 3 2 $(4, 1)=4$ $(2, 3)=3$ $(3, 3)=3$	Minimax 1 3 2 	B1 M1	Minimax column for stage 1 shows 1, 3, 2 identified in some way 1, 3, 2 transferred to working column for stage 2 correctly	

(vii)

3

(i)

	1	1	0	3	3	B1	Minimax column for stage 1 shows 1, 3, 2	
		2	0	2	2		identified in some way	
	2	0	0	(4, 1)=4 (2, 3)=3	3	M1	1, 3, 2 transferred to working column for	
		1	1	(2, 3)=3 (3, 3)=3	3		stage 2 correctly	
		1	2	(5, 3) = 5	5	M1	Calculating maximum values in working	
		2	0	(2, 1)= 2	2		column for stage 2	
			2	(4, 2)= 4		A1	Minimax column for stage 2 shows 3, 3, 2	[4]
	3	0	0	(5,3)=5		AI		[4]
			2	(3,3)=3 (1,2)=2	2		identified in some way (cao)	
			2	(1,2)-2	2	M1	Calculating maximum values in working	
							column for stage 3, correct method	
						A1	Minimax column for stage 3 shows 2	
							identified in some way (cao)	[2]
(ii)	Minimax	imax value = 2 B1 2, cao						
	Minimax route = $(3;0) - (2;2) - (1;0) - (0;0)$					M1	Tracing their route (whatever problem solved)	
			(or in rev		, , , , ,	A1	This route from correct working	
				,			(using network \Rightarrow M0)	[3]
(iii)		(2;0) 4	(1;0)		B1	All vertices labelled correctly	
	5		2	\frown	. 1	M1	Arcs correct, need not be directed	
	(2.0)	3	_3	3			Condone stage boundaries shown	
	(3;0)	2;1)	2/5	$(1;\bar{1})$	2 (0;0)	A1	Arc weights correct (be generous in	
			<u> </u>				interpretation of which weight is attached to	
		(2;2) 4	(1;2)			which arc)	[3]
							Total =	12

47	737 Mark	Scheme	January 20. 73	5
			ANSWERED ON INSERT	°C/0
(i)	A single source that joins to S_1 and S_2 Directed arcs with weights of at least 90 and 110, respectively T_1 and T_2 joined to a single sink Directed arcs with weights of at least 100 and	B1	ANSWERED ON INSERT	
	200, respectively	B1	Condone no directions shown	[2]
(ii)	If AE and BE were both full to capacity there would be 50 gallons per hour flowing into E , but the most that can flow out of E is 40 gallons per hour.	M1 A1	Considering what happens at E (50 into E) At most 40 out	[2]
(iii)	40 + 60 + 60 + 140 = 300 gallons per hour	B1	300	[1]
(iv)	30 + 20 + 30 + 20 + 40 + 40 + 20 + 40 = 240 gallons per hour	M1 A1	Evidence of using correct cut 240	[2]
(v)	A feasible flow through network Flow = 200 gallons per hour Cut through arcs S_1A , S_1B , S_1C , S_2B , S_2C and S_2D or cut $X = \{S_1, S_2\}$, $Y = \{A, B, C, D, E, F, G, T_1, T_2\}$	M1 A1 B1	Cut indicated in any way (May be on diagram for part (i))	[3]
(vi)			May have working or cut shown on diagram	
	Flows into <i>C</i> go to C_{IN} , arc of capacity 20 from C_{IN} to C_{OUT} , and flows out of <i>C</i> go from C_{OUT} .	B1 B1 B1	Into $C (S_1 = 40, S_2 = 40, D = 20)$ Through C Out of $C (F = 60, G = 60)$	
	Cut $X = \{S_1, S_2, C_{IN}\}$ or $X = \{S_1, S_2, C_{IN}, D\}$ shows max flow = 140 gallons per hour	B1	140 (cut not necessary)	[4]

4	737		Marl	< Schen	ne January 20.	15
					ANSWERED ON INSERT	"°C/C
(i)	Activity	Duration (days)	Immediate predecessors		ne January 20. ANSWERED ON INSERT	
	A	8	-			
	В	6	-			
		4	-			
	D E	4 2	<u> </u>	B1	Precedences correct for A, B, C, D	
	F	3	<u>A B</u>			
	G	4	D	DI		
	Н	5	D E F	B1	Precedences correct for E, F, G	
		3 5	<u> </u>	B1	Precedences correct for H, I, J	[3]
(ii)	J	5	CF			
		8 8	12 12			
				M1	Forward page no more than and independent	
	0 0	89	12 12 17 17		Forward pass, no more than one independent error	
				A1	Forward pass correct (cao)	
		111	² ¥ /	M1	Backward pass, no more than one	
					independent error	
				A1	Backward pass correct (cao)	[4]
			\searrow			
			11 12			
	Minimum n	roject duratic	n = 17 days	B1	17, cao	
		vities = $A D I$		B1	A D H, cao	[2]
(iii)					ANSWERED ON GRAPH PAPER	╞
				M1	A plausible histogram, with no holes or overhanging blocks	
				A1	Correct shape	
						[2]
(iv)	Example:				Precedences not violated, durations correct	+
	Start \hat{A} and B		ut delay C to day 6	B1	Dealing with A, B and C	
1			ut delay E to day 11 G on day 12, H on	B1 M1	Dealing with D, E and F Dealing with G, HI and J	
				1 8 4 1		

Grade Thresholds

Advanced GCE Mathematics (3890-2, 7890-2) January 2008 Examination Series

Unit Threshold Marks

78	92	Maximum Mark	Α	В	с	D	E	U
4721	Raw	72	58	50	42	35	28	0
4721	UMS	100	80	70	60	50	40	0
4722	Raw	72	60	52	45	38	31	0
4722	UMS	100	80	70	60	50	40	0
4723	Raw	72	51	44	37	31	25	0
4725	UMS	100	80	70	60	50	40	0
4724	Raw	72	57	49	42	35	28	0
4/24	UMS	100	80	70	60	50	40	0
4725	Raw	72	56	49	42	36	30	0
4725	UMS	100	80	70	60	50	40	0
4726	Raw	72	49	43	37	31	25	0
4720	UMS	100	80	70	60	50	40	0
4727	Raw	72	55	48	41	34	27	0
4/2/	UMS	100	80	70	60	50	40	0
4728	Raw	72	59	52	45	38	31	0
4720	UMS	100	80	70	60	50	40	0
4729	Raw	72	57	49	41	33	25	0
4723	UMS	100	80	70	60	50	40	0
4730	Raw	72	50	43	36	29	22	0
4730	UMS	100	80	70	60	50	40	0
4732	Raw	72	55	48	41	34	27	0
4752	UMS	100	80	70	60	50	40	0
4733	Raw	72	55	48	41	34	28	0
4733	UMS	100	80	70	60	50	40	0
4734	Raw	72	52	45	38	31	25	0
4/34	UMS	100	80	70	60	50	40	0
4736	Raw	72	57	51	45	40	35	0
4730	UMS	100	80	70	60	50	40	0
4737	Raw	72	59	52	45	39	33	0
4/3/	UMS	100	80	70	60	50	40	0

www.mymathscioud.com

Specification Aggregation Results

	Maximum Mark	Α	В	С	D	E	U
3890	300	240	210	180	150	120	0
3891	300	240	210	180	150	120	0
3892	300	240	210	180	150	120	0
7890	600	480	420	360	300	240	0
7891	600	480	420	360	300	240	0
7892	600	480	420	360	300	240	0

www.mymathscloud.com

Overall threshold marks in UMS (ie after conversion of raw marks to uniform marks)

The cumulative percentage of candidates awarded each grade was as follows:

	Α	В	С	D	E	U	Total Number of Candidates
3890	25.5	49.6	70.9	84.3	96.0	100	478
3892	28.6	71.4	100	100	100	100	7
7890	33.0	58.3	79.1	92.2	97.4	100	115
7892	11.1	44.4	100	100	100	100	9

For a description of how UMS marks are calculated see: http://www.ocr.org.uk/learners/ums_results.html

Statistics are correct at the time of publication.

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

60

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553