## Mathematics

## Advanced GCE A2 7890-2

## Mark Schemes for the Units

## January 2008

OCR (Oxford, Cambridge and RSA Examinations) is a unitary awarding body, established by the University of Cambridge Local Examinations Syndicate and the RSA Examinations Board in January 1998. OCR provides a full range of GCSE, A level, GNVQ, Key Skills and other qualifications for schools and colleges in the United Kingdom, including those previously provided by MEG and OCEAC. It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2008
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 0DL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

## CONTENTS

Advanced GCE Mathematics (7890)
Advanced GCE Pure Mathematics (7891)
Advanced GCE Further Mathematics (7892)

Advanced Subsidiary GCE Mathematics (3890) Advanced Subsidiary GCE Pure Mathematics (3891) Advanced Subsidiary GCE Further Mathematics (3892)
Unit/Components Page
4721 Core Mathematics 1 ..... 1
4722 Core Mathematics 2 ..... 7
4723 Core Mathematics 3 ..... 10
4724 Core Mathematics 4 ..... 13
4725 Further Pure Mathematics 1 ..... 16
4726 Further Pure Mathematics 2 ..... 19
4727 Further Pure Mathematics 3 ..... 22
4728 Mechanics 1 ..... 26
4729 Mechanics 2 ..... 28
4730 Mechanics 3 ..... 30
4732 Probability \& Statistics 1 ..... 333
4733 Probability \& Statistics 2 ..... 366
4734 Probability \& Statistics 3 ..... 39
4736 Decision Mathematics 1 ..... 422
4737 Decision Mathematics 2 ..... 488
Grade Thresholds ..... 544

## 4721 Core Mathematics 1

| 1 | $\begin{aligned} & \frac{4(3+\sqrt{7})}{(3-\sqrt{7})(3+\sqrt{7})} \\ & =\frac{12+4 \sqrt{7}}{9-7} \\ & =6+2 \sqrt{7} \end{aligned}$ | M1 <br> B1 <br> $\begin{array}{lr}\text { A1 } & 3 \\ & 3\end{array}$ | Multiply top and bottom by conjugate $\begin{aligned} & 9 \pm 7 \text { soi in denominator } \\ & 6+2 \sqrt{7} \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| $2(\mathrm{i})$ <br> (ii) | $\begin{aligned} & x^{2}+y^{2}=49 \\ & x^{2}+y^{2}-6 x-10 y-30=0 \\ & (x-3)^{2}-9+(y-5)^{2}-25-30=0 \\ & (x-3)^{2}+(y-5)^{2}=64 \\ & r^{2}=64 \\ & r=8 \end{aligned}$ | B1 1 <br> M1 <br> $\begin{array}{ll}\text { A1 } & 2 \\ & 3\end{array}$ | $x^{2}+y^{2}=49$ <br> $3^{2} 5^{2} 30$ with consistent signs soi $8 \text { сао }$ |
| 3 | $\begin{aligned} & a(x+3)^{2}+c=3 x^{2}+b x+10 \\ & 3\left(x^{2}+6 x+9\right)+c=3 x^{2}+b x+10 \\ & 3 x^{2}+18 x+27+c=3 x^{2}+b x+10 \\ & c=-17 \end{aligned}$ | B1 <br> B1 <br> M1 <br> A1 <br> 4 | $\begin{aligned} & a=3 \text { soi } \\ & b=18 \text { soi } \\ & c=10-9 a \text { or } c=10-\frac{b^{2}}{12} \\ & c=-17 \end{aligned}$ |
| 4(i) <br> (ii) <br> (iii) | $p=-1$ $\begin{aligned} & \sqrt{25 k^{2}}=15 \\ & 25 k^{2}=225 \\ & k^{2}=9 \\ & k= \pm 3 \end{aligned}$ $\begin{aligned} & \sqrt[3]{t}=2 \\ & t=8 \end{aligned}$ | B1 1 <br> M1 <br> A1 <br> A1 3 <br> M1 <br> A1 $\quad 2$ <br>  <br>  <br> 6 | $p=-1$ <br> Attempt to square 15 or attempt to square root $25 k^{2}$ $\begin{aligned} & k=3 \\ & k=-3 \end{aligned}$ <br> $\frac{1}{t^{\frac{1}{3}}}=\frac{1}{2}$ or $t^{\frac{1}{3}}=2$ soi $t=8$ |




| 8(i) | $\frac{d y}{d x}=3 x^{2}+2 x-1$ | $\begin{gathered} \text { *M1 } \\ \text { A1 } \end{gathered}$ | Attempt to differentiate (at least one correct term) 3 correct terms |
| :---: | :---: | :---: | :---: |
|  | At stationary points, $3 x^{2}+2 x-1=0$ | M1 | Use of $\frac{d y}{d x}=0$ |
|  | $(3 x-1)(x+1)=0$ | DM1 | Correct method to solve 3 term quadratic |
|  | $\begin{aligned} & x=\frac{1}{3}, x=-1 \\ & y=\frac{76}{27}, y=4 \end{aligned}$ | A1 <br> A1 6 | $\begin{aligned} & x=\frac{1}{3}, x=-1 \\ & y=\frac{76}{27}, 4 \end{aligned}$ |
|  |  |  | SR one correct ( $x, \mathrm{y}$ ) pair www B1 |
| (ii) | $\frac{d^{2} y}{d x^{2}}=6 x+2$ | M1 | Looks at sign of $\frac{d^{2} y}{d x^{2}}$ for at least one of their $x$-values or other correct method |
|  | $\begin{aligned} & x=\frac{1}{3}, \frac{d^{2} y}{d x^{2}}>0 \\ & x=-1, \frac{d^{2} y}{d x^{2}}<0 \end{aligned}$ | A1 <br> A1 3 | $x=\frac{1}{3}$, minimum point CWO <br> $x=-1$, maximum point CWO |
| (iii) | $-1<x<\frac{1}{3}$ | M1 <br> A1 2 | Any inequality (or inequalities) involving both their $x$ values from part (i) <br> Correct inequality (allow $<$ or $\leq$ ) |
|  |  | 11 |  |

\begin{tabular}{|c|c|c|c|}
\hline 9(i) \& $$
\begin{aligned}
\text { Gradient of } \mathrm{AB}= & \frac{-2-1}{-5-3} \\
& =\frac{3}{8}
\end{aligned}
$$ \& B1 \& $$
\frac{3}{8} \quad \text { ое }
$$ <br>
\hline \& $$
\begin{aligned}
& y-1=\frac{3}{8}(x-3) \\
& 8 y-8=3 x-9 \\
& 3 x-8 y-1=0
\end{aligned}
$$ \& M1

A1 \& | Equation of line through either A or B, any nonzero numerical gradient |
| :--- |
| Correct equation in correct form | <br>

\hline (ii) \& $$
\begin{aligned}
& \left(\frac{-5+3}{2}, \frac{-2+1}{2}\right) \\
& =\left(-1,-\frac{1}{2}\right)
\end{aligned}
$$ \& M1

A1 2 \& $$
\begin{aligned}
& \text { Uses }\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) \\
& \left(-1,-\frac{1}{2}\right)
\end{aligned}
$$ <br>

\hline (iii) \& \[
$$
\begin{aligned}
& A C=\sqrt{(-5+3)^{2}+(-2-4)^{2}} \\
& =\sqrt{2^{2}+6^{2}} \\
& =\sqrt{40} \\
& =2 \sqrt{10}
\end{aligned}
$$

\] \& | M1 |
| :--- |
| A1 |
| A1 3 | \& | Uses $\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$ $\sqrt{40}$ |
| :--- |
| Correctly simplified surd | <br>


\hline (iv) \& | Gradient of $\mathrm{AC}=\frac{-2-4}{-5+3}=3$ |
| :--- |
| Gradient of $\mathrm{BC}=\frac{4-1}{-3-3}=-\frac{1}{2}$ | \& | B1 |
| :--- |
| B1 | \& 3 oe $-\frac{1}{2}$ oe <br>


\hline \& $3 \times-\frac{1}{2} \neq-1$ so lines are not perpendicular \& | M1 |
| :--- |
| A1 4 |
| 12 | \& Attempts to check $\mathrm{m}_{1} \times \mathrm{m}_{2}$ Correct conclusion www <br>

\hline
\end{tabular}



## 4722 Core Mathematics 2

|  | Mark Total |  |
| :---: | :---: | :---: |
| 1 $\begin{aligned} \text { area of sector } & =1 / 2 \times 11^{2} \times 0.7 \\ & =42.35 \\ \text { area of triangle } & =1 / 2 \times 11^{2} \times \sin 0.7=38.98 \\ \text { hence area of segment } & =42.35-38.98 \\ \qquad & =3.37 \end{aligned}$ | $\begin{array}{ll} \text { M1 } & \\ \text { A1 } & \\ \text { M1 } & \\ \text { A1 } & \mathbf{4} \\ & 4 \\ \hline \end{array}$ | Attempt sector area using $(1 / 2) r^{2} \theta$ <br> Obtain 42.35, or unsimplified equiv, soi Attempt triangle area using $1 / 2 a b \sin C$ or equiv, and subtract from attempt at sector Obtain 3.37, or better |
| $\begin{aligned} 2 \quad \text { area } & \approx \frac{1}{2} \end{aligned} \times 2 \times\{2+2(\sqrt{12}+\sqrt{28})+\sqrt{52}\}$ | $\begin{array}{lr} \text { M1 } & \\ \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & 4 \\ & 4 \\ \hline \end{array}$ | Attempt $y$-values at $x=1,3,5,7$ only <br> Correct trapezium rule, any $h$, for their $y$ values to find area between $x=1$ and $x=7$ <br> Correct $h$ (soi) for their $y$ values Obtain 26.7 or better (correct working only) |
| $3 \quad$ (i) $\quad \log _{a} 6$ $\text { (ii) } \begin{gathered} 2 \log _{0} x-3 \log _{10} y=\log _{0} x^{2}-\log _{10} y^{3} \\ =\log _{10} \frac{x^{2}}{y^{3}} \end{gathered}$ | $\begin{array}{lr} \text { B1 } & \mathbf{1} \\ \text { M1* } & \\ \text { M1 dep* } & \\ \text { A1 } & \mathbf{3} \\ & 4 \\ \hline \end{array}$ | State $\log _{a} 6$ cwo <br> Use $b \log a=\log a^{b}$ at least once <br> Use $\log a-\log b=\log a / b$ <br> Obtain $\log _{10} \frac{x^{2}}{y^{3}} \quad$ cwo |
| 4 $\text { (i) } \quad \frac{B D}{\sin 62}=\frac{16}{\sin 50}$ <br> (ii) $\begin{aligned} & 18.4^{2}=10^{2}+20^{2}-2 \times 10 \times 20 \times \cos \theta \\ & \cos \theta=0.3998 \\ & \theta=66.4^{0} \end{aligned}$ | M1  <br> A1 $\mathbf{2}$ <br> M1  <br> M1  <br> A1 $\mathbf{3}$ <br>  $\mathbf{5}$ | Attempt to use correct sine rule in $\triangle B C D$, or equiv. <br> Obtain 18.4 cm <br> Attempt to use correct cosine rule in $\triangle A B D$ <br> Attempt to rearrange equation to find $\cos B A D$ <br> (from $a^{2}=b^{2}+c^{2} \pm(2) b c \cos A$ ) <br> Obtain $66.4^{0}$ |
| $5 \quad \int 12 x^{\frac{1}{2}} \mathrm{~d} x=8 x^{\frac{3}{2}}$ $\begin{aligned} & y=8 x^{\frac{3}{2}}+c \Rightarrow 50=8 \times 4^{\frac{3}{2}}+c \\ & \Rightarrow c=-14 \end{aligned}$ <br> Hence $y=8 x^{\frac{3}{2}}-14$ | M1  <br> A1 $\sqrt{ }$  <br> A1  <br> M1  <br> A1 $\sqrt{ }$  <br> A1 6 <br>  6 | Attempt to integrate <br> Obtain correct, unsimplified, integral following their $\mathrm{f}(x)$ <br> Obtain $8 x^{\frac{3}{2}}$, with or without $+c$ <br> Use $(4,50)$ to find $c$ <br> Obtain $c=-14$, following $k x^{\frac{3}{2}}$ only <br> State $y=8 x^{\frac{3}{2}}-14$ aef, as long as single power of $x$ |


|  | Mark Total |  |
| :---: | :---: | :---: |
| 6 <br> (i) $\begin{aligned} & u_{1}=7 \\ & u_{2}=9, u_{3}=11 \end{aligned}$ <br> (ii) Arithmetic Progression <br> (iii) $1 / 2 N(14+(N-1) \times 2)=2200$ $\begin{aligned} & N^{2}+6 N-2200=0 \\ & (N-44)(N+50)=0 \\ & \text { hence } N=44 \end{aligned}$ | B1  <br> B1 $\mathbf{2}$ <br> B1 $\mathbf{1}$ <br> B1  <br> M1  <br> A1  <br> M1  <br> A1 $\mathbf{5}$ <br>  $\mathbf{8}$ | Correct $u_{1}$ <br> Correct $u_{2}$ and $u_{3}$ <br> Any mention of arithmetic <br> Correct interpretation of sigma notation Attempt sum of AP, and equate to 2200 Correct (unsimplified) equation Attempt to solve 3 term quadratic in $N$ Obtain $N=44$ only ( $N=44$ www is full marks) |
| 7 (i) Some of the area is below the $x$-axis <br> (ii) $\begin{aligned} {\left[\frac{1}{3} x^{3}-\frac{3}{2} x^{2}\right]_{0}^{3}=} & \left(9-\frac{27}{2}\right)-(0-0) \\ & =-4 \frac{1}{2} \\ {\left[\frac{1}{3} x^{3}-\frac{3}{2} x^{2}\right]_{3}^{5} } & =\left(\frac{125}{3}-\frac{75}{2}\right)-\left(9-\frac{27}{2}\right) \\ & =8 \frac{2}{3} \end{aligned}$ <br> Hence total area is $131 / 6$ | B1 $\mathbf{1}$ <br> M1  <br> A1  <br> M1  <br> A1  <br> M1  <br> A1  <br> A1 7 <br>  8 <br>  8 | Refer to area / curve below $x$-axis or 'negative area'... <br> Attempt integration with any one term correct Obtain $1 / 3 x^{3}-3 / 2 x^{2}$ <br> Use limits 3 (and 0 ) - correct order / subtraction Obtain (-) $4^{1 ⁄ 2} 2$ <br> Use limits 5 and 3 - correct order / subtraction <br> Obtain $8^{2 / 3}$ (allow 8.7 or better) <br> Obtain total area as $13^{1 / 6}$, or exact equiv <br> SR: if no longer $\int \mathrm{f}(x) \mathrm{d} x$, then B1 for using $[0,3]$ and $[3,5]$ |
| 8 <br> (i) $\begin{aligned} \mathrm{u}_{4} & =10 \times 0.8^{3} \\ & =5.12 \end{aligned}$ <br> (ii) $\begin{aligned} S_{20} & =\frac{10\left(1-0.8^{20}\right)}{1-0.8} \\ & =49.4\end{aligned}$ <br> (iii) $\frac{10}{1-0.8}-\frac{10\left(1-0.8^{N}\right)}{(1-0.8)}<0.01$ $\begin{aligned} & 50-50\left(1-0.8^{N}\right)<0.01 \\ & 0.8^{N}<0.0002 \text { A.G. } \\ & \log 0.8^{N}<\log 0.0002 \\ & \quad N \log 0.8<\log 0.0002 \end{aligned}$ <br> $N>38.169$, hence $N=39$ | M1  <br> A1 $\mathbf{2}$ <br> M1  <br> A1 $\mathbf{2}$ <br> M1  <br> A1  <br> M1  <br> A1  <br> M1  <br> M1  <br> A1 $\mathbf{7}$ | Attempt $\mathrm{u}_{4}$ using $a r^{n-1}$ <br> Obtain 5.12 aef <br> Attempt use of correct sum formula for a GP <br> Obtain 49.4 <br> Attempt $S_{\infty}$ using $\frac{a}{1-r}$ <br> Obtain $S_{\infty}=50$, or unsimplified equiv <br> Link $S_{\infty}-S_{N}$ to 0.01 and attempt to rearrange <br> Show given inequality convincingly <br> Introduce logarithms on both sides <br> Use $\log a^{b}=b \log a$, and attempt to find $N$ <br> Obtain $N=39$ only |



## 4723 Core Mathematics 3

1 (i) Show correct process for composition of functions

Obtain ( -3 and hence) -23
(ii) Either: State or imply $x^{3}+4=12$

Attempt solution of equation involving $x^{3}$
Obtain 2
Or: $\quad$ Attempt expression for $\mathrm{f}^{-1}$
Obtain $\sqrt[3]{x-4}$ or $\sqrt[3]{y-4}$
Obtain 2

M1 numerical or algebraic; the right way round

A1 2

## B1

M1 as far as $x=\ldots$
A1 3 and no other value

M1
A1
A1 (3) and no other value

2 (i) Obtain correct first iterate 2.864
Carry out correct iteration process
Obtain 2.877

B1 or greater accuracy 2.864327...; condone 2 dp here and in working

A1 3 after at least 4 steps; answer required to exactly 3 dp

$$
[3 \rightarrow 2.864327 \rightarrow 2.878042 \rightarrow 2.876661 \rightarrow 2.876800]
$$

## B1

M1 involving cubing and grouping non-zero terms on LHS
A1 3 or equiv with integers

3 (a) State correct equation involving $\cos \frac{1}{2} \alpha$

Attempt to find value of $\alpha$
Obtain 151
(b) State or imply $\cot \beta=\frac{1}{\tan \beta}$

Rearrange to the form $\tan \beta=k$
Obtain 69.3
Obtain 111

B1 such as $\cos \frac{1}{2} \alpha=\frac{1}{4}$ or $\frac{1}{\cos \frac{1}{2} \alpha}=4$ or ...
M1 using correct order for the steps
A1 3 or greater accuracy; and no other values between 0 and 180

## B1

M1

## A1

A1 4 or greater accuracy; and no others between 0 and 180

4 (i) Obtain derivative of form $k h^{5}\left(h^{6}+16\right)^{n}$

Obtain correct $3 h^{5}\left(h^{6}+16\right)^{\frac{-1}{2}}$
Substitute to obtain 10.7
(ii) Attempt multn or divn using 8 and answer from (i) M1

Attempt 8 divided by answer from (i)
Obtain 0.75

M1 any constant $k$; any $n<\frac{1}{2}$; allow if - 4 term retained

A1 or (unsimplified) equiv; no -4 now
A1 3 or greater accuracy or exact equiv

M1
A1 $\sqrt{ } \mathbf{3}$ or greater accuracy; allow $0.75 \pm 0.01$; following their answer from (i)

5 (a) Obtain integral of form $k(3 x+7)^{10}$
Obtain (unsimplified) $\frac{1}{10} \times \frac{1}{3}(3 x+7)^{10}$
Obtain (simplified) $\frac{1}{30}(3 x+7)^{10}+c$
(b) State $\int \pi\left(\frac{1}{2 \sqrt{x}}\right)^{2} \mathrm{~d} x$

Integrate to obtain $k \ln x$

Obtain $\frac{1}{4} \pi \ln x$ or $\frac{1}{4} \ln x$ or $\frac{1}{4} \pi \ln 4 x$ or $\frac{1}{4} \ln 4 x \quad$ A1
Show use of the $\log a-\log b$ property
Obtain $\frac{1}{4} \pi \ln 2$

M1 any constant $k$
A1 or equiv
A1 3

B1 or equiv involving $x$; condone no $\mathrm{d} x$ M1 any constant $k$ involving $\pi$ or not; or equiv such as $k \ln 4 x$ or $k \ln 2 x$

M1 not dependent on earlier marks
A1 5 or similarly simplified equiv

| Either: | Refer to translation and reflection <br> State translation by 1 in negative $x$-direction |
| :--- | :--- |
|  | Or: | | State reflection in $x$-axis |
| :--- |
| Refer to translation and reflection |
| State reflection in $y$-axis |
| State translation by 1 in positive $x$-direction |

(ii) Show sketch with attempt at reflection of 'negative' part in $x$-axis
Show (more or less) correct sketch
(iii) Attempt correct process for finding at least one value

Obtain $1-\frac{1}{2} \sqrt{3}$
Obtain $1+\frac{1}{2} \sqrt{3}$
B1 in either order; allow clear equivs
B1 or equiv but now using correct terminology
B1 3 using correct terminology
B1 in either order; allow clear equivs
B1
B1 (3) with order reflection then translation clearly intended

M1 and curve for $0<x<1$ unchanged
A1 2 with correct curvature
M1 as far as $x=\ldots$; accept decimal equivs (degrees or radians) or expressions involving $\sin \left(\frac{1}{3} \pi\right)$
A1 or exact equiv
A1 3 or exact equiv; give A1A0 if extra incorrect solution(s) provided

7 (i) Attempt use of product rule for $x \mathrm{e}^{2 x}$
Obtain $\mathrm{e}^{2 x}+2 x \mathrm{e}^{2 x}$
Attempt use of quotient rule
Obtain unsimplified $\frac{(x+k)\left(\mathrm{e}^{2 x}+2 x \mathrm{e}^{2 x}\right)-x \mathrm{e}^{2 x}}{(x+k)^{2}}$
Obtain $\frac{\mathrm{e}^{2 x}\left(2 x^{2}+2 k x+k\right)}{(x+k)^{2}}$
(ii) Attempt use of discriminant

Obtain $4 k^{2}-8 k=0$ or equiv and hence $k=2$
Attempt solution of $2 x^{2}+2 k x+k=0$

Obtain $x=-1$
Obtain $-\mathrm{e}^{-2}$

M1 obtaining $\ldots+\ldots$

A1 5 AG; necessary detail required

## A1

A1 5 or exact equiv

8 (i) State or imply $h=1$
Attempt calculation involving attempts at $y$ values

Obtain $a(1+4 \times 2+2 \times 4+4 \times 8+2 \times 16+4 \times 32+64)$ A1
Obtain 91
(ii) State $\mathrm{e}^{x \ln 2}$ or $k=\ln 2$

Integrate $\mathrm{e}^{k x}$ to obtain $\frac{1}{k} \mathrm{e}^{k x}$
Obtain $\frac{1}{\ln 2}\left(\mathrm{e}^{6 \ln 2}-\mathrm{e}^{0}\right)$
Simplify to obtain $\frac{63}{\ln 2}$
(iii) Equate answers to (i) and (ii)

Obtain $\frac{63}{91}$ and hence $\frac{9}{13}$

## B1

M1 addition with each of coefficients 1, 2, 4 occurring at least once; involving at least $5 y$ values any constant $a$
A1 4

B1 allow decimal equiv such as $\mathrm{e}^{0.69 x}$
M1 any constant $k$ or in terms of general $k$
A1 or exact equiv
A1 4 allow if simplification in part (iii)

M1 provided $\ln 2$ involved other than in power of e
A1 2 AG; necessary correct detail required
(i) State at least one of $\cos \theta \cos 60-\sin \theta \sin 60$
and $\cos \theta \cos 30-\sin \theta \sin 30$
Attempt complete multiplication of identities of form

$$
\pm \cos \cos \pm \sin \sin
$$

$$
\cos ^{2} \theta+\sin ^{2} \theta=1 \text { and } 2 \sin \theta \cos \theta=\sin 2 \theta
$$

Obtain $\sqrt{3}-2 \sin 2 \theta$
(ii) Attempt use of 22.5 in right-hand side

Obtain $\sqrt{3}-\sqrt{2}$
(iii) Obtain 10.7

Attempt correct process to find two angles
Obtain 79.3
(iv) Indicate or imply that critical values of $\sin 2 \theta$ are -1 and 1
Obtain both of $k>\sqrt{3}+2, k<\sqrt{3}-2$
Obtain complete correct solution

## B1

M1 with values $\frac{1}{2} \sqrt{3}, \frac{1}{2}$ involved

## M1

A1 4 AG; necessary detail required

## M1

A1 2 or exact equiv

B1 or greater accuracy; allow $\pm 0.1$
M1 from values of $2 \theta$ between 0 and 180
A1 3 or greater accuracy and no others between 0 and 90 ; allow $\pm 0.1$

## M1

A1 condoning decimal equivs, $\leq \geq$ signs
A1 3 now with exact values and unambiguously stated

## 4724 Core Mathematics 4

1 Method for finding magnitude of any vector Method for finding scalar prod of any 2 vectors
Using $\cos \theta=\frac{\mathbf{i}-2 \mathbf{j}+3 \mathbf{k} .2 \mathbf{i}+\mathbf{j}+\mathbf{k}}{|\mathbf{i}-2 \mathbf{j}+3 \mathbf{k}| 2 \mathbf{i}+\mathbf{j}+\mathbf{k} \mid}$
70.9 (70.89, 70.893) WWW; 1.24 (1.237)

2 (i) Correct format $\frac{A}{x+1}+\frac{B}{x+2}$
(ii) $\int \frac{1}{x+1} \mathrm{~d} x=\ln (x+1)$ or $\ln |x+1|$
or $\int \frac{1}{x+2} \mathrm{~d} x=\ln (x+2)$ or $\ln |x+2|$
$A \ln |x+1|+B \ln |x+2|+\mathrm{c} \quad$ ISW

3 Method 1 (Long division)
Clear correct division method at beginning

Correct method up to \& including $x$ term in quot
Method 2 (Identity)
Writing $\left(x^{2}+2 x-1\right)\left(x^{2}+b x+2\right)+c x+7$
Attempt to compare cfs of $x^{3}$ or $x^{2}$ or $x$ or const
Then:
$b=-4$
$c=-1$
$a=5$
$4 \quad \frac{\mathrm{~d}}{\mathrm{~d} x}\left(x^{2} y\right)=x^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 x y$
$\frac{\mathrm{d}}{\mathrm{d} x}\left(y^{3}\right)=3 y^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}$
Substitute $(x, y)=(1,1)$ and solve for $\frac{\mathrm{d} y}{\mathrm{~d} x}$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{11}{7} \quad W W W$
Gradient normal $=-\frac{1}{\frac{\mathrm{~d} y}{\mathrm{~d} x}}$
$7 x-11 y+4=0 \quad$ AEF

| B1 | s.o.i.; |
| :--- | :--- |
| B1 |  |
| M1 | or v.v. Solve now or at normal stage. [This |
| M1 | dep on either/both B1 earned] |
| A1 | Implied if grad normal $=\frac{7}{11}$ <br> M1 |
| A1 | $\mathbf{6}$ |


| 5 (i) Use $3 \mathbf{i}-4 \mathbf{j}+2 \mathbf{k}$ and $2 \mathbf{i}-\mathbf{j}-5 \mathbf{k}$ only <br> Use correct method for scalar prod of any 2 vectors <br> Obtain $6+4-10$, state $=0$ \& deduce perp $\quad$ AG | M1  <br> M1  <br> A1 $\mathbf{3}$ | (indep) May be as part of $\cos \theta=\frac{a . b}{\|a\|\|b\|}$ |
| :---: | :---: | :---: |
| (ii) Produce 3 equations in $s$ and $t$ <br> Solve 2 of the equations for $s$ and $t$ Obtain $(s, t)=\left(\frac{3}{5}, \frac{12}{5}\right)$ or $\left(\frac{9}{22}, \frac{18}{11}\right)$ or $\left(\frac{3}{19}, \frac{33}{19}\right)$ <br> Substitute their values in $3^{\text {rd }}$ equation State/show inconsistency $\underline{\&}$ state non-parallel $\therefore$ skew | $\begin{array}{\|ll} \hline \text { M1 } & \\ \text { dep*M1 } & \\ \text { A1 } & \\ \text { dep*M1 } & \\ \text { A1 } & \mathbf{5} \end{array}$ | $\begin{aligned} & \text { of the type } 5+3 s=2+2 t, \quad-2-4 s=-2-t \\ & \text { and }-2+2 s=7-5 t \\ & \text { Or Eliminates }(\text { or } t) \text { from } 2 \text { pairs dep } * \text { M1 } \\ & (5 t=12, I 1 t=18,19 t=33) \text { or }(5 s=3,22 s=9,19 s=3) \\ & \text { Al,A1 } \end{aligned}$ |
|  | B1  <br> M1  <br> A1 3 | Do not accept $\binom{-4}{2}$ unless 10 also appears |
| (ii) f.t. (their $\mathrm{cf} x)+b$ (their const cf$)=1$ <br> f.t. (their $\left.\mathrm{cf} x^{2}\right)+b($ their $\mathrm{cf} x)=-2$ <br> Attempt to eliminate ' $b$ ' and produce equation in ' $a$ ' Produce $6 a^{2}+4 a=2$ AEF $a=\frac{1}{3}$ and $b=\frac{7}{3}$ only | $\begin{array}{ll} \sqrt{ } \mathrm{B} 1 & \\ \sqrt{\mathrm{~B} 1} & \\ \mathrm{M} 1 & \\ \mathrm{~A} 1 & \\ \mathrm{~A} 1 & \mathbf{5} \end{array}$ | Expect $b-4 a=1$ <br> Expect $10 a^{2}-4 a b=-2$ <br> Or eliminate ' $a$ ' and produce equation in ' $b$ ' Or $6 b^{2}+4 b=42$ AEF <br> Made clear to be only (final) answer |
| (i) Perform an operation to produce an equation connecting $A$ and $B$ (or possibly in $A$ or in $B$ ) $A=2$ $B=-2$ $B=-2$ | M1  <br> A1  <br> A1 3 | Probably substituting value of $\theta$, or comparing coefficients of $\sin x$, and/or $\cos x$ <br> WW scores 3 |
| (ii) Write $4 \sin \theta$ as $A(\sin \theta+\cos \theta)+B(\cos \theta-\sin \theta)$ and re-write integrand as $A+\frac{B(\cos \theta-\sin \theta)}{\sin \theta+\cos \theta}$ $\begin{aligned} & \int A \mathrm{~d} \theta=A \theta \\ & \int \frac{B(\cos \theta-\sin \theta)}{\sin \theta+\cos \theta} \mathrm{d} \theta=B \ln (\sin \theta+\cos \theta) \end{aligned}$ <br> Produce $\frac{1}{4} A \pi+B \ln \sqrt{2}$ f.t. with their $A, B$ | $\begin{array}{ll} \text { M1 } & \\ \sqrt{B} 1 & \\ \sqrt{ } \mathrm{~A} 2 & \\ \sqrt{ } \mathrm{~A} 1 & \mathbf{5} \end{array}$ | $A$ and $B$ need not be numerical - but, if they are, they should be the values found in (i). general or numerical general or numerical <br> Expect $\frac{1}{2} \pi-\ln 2$ (Numerical answer only) |
| 8 $\begin{aligned} & \text { (i) } \frac{\mathrm{d} x}{\mathrm{~d} t} \text { or }-k x^{\frac{1}{2}} \text { or } k x^{\frac{1}{2}} \text { seen } \\ & \frac{\mathrm{d} x}{\mathrm{~d} t}=-k x^{\frac{1}{2}} \text { or } \frac{\mathrm{d} x}{\mathrm{~d} t}=k x^{\frac{1}{2}} \end{aligned}$ | $\left.\begin{array}{ll} \text { M1 } & \\ \text { A1 } & \mathbf{2} \end{array} \right\rvert\,$ | $k$ non-numerical; i.e. 1 side correct <br> i.e. both sides correct |
| (ii) Separate variables or invert, + attempt to integrate * <br> Correct result for their equation after integration Subst $(t, x)=(0,2)$ into eqn containing $k \& /$ or $c$ dep ${ }^{*}$ Subst $(t, x)=(5,1)$ into eqn containing $k \underline{\&} c \quad$ dep ${ }^{*}$ Subst $x=0.5$ into eqn with their $k \& c$ subst dep ${ }^{*}$ $t=8.5$ (8.5355339) | $\begin{array}{ll} \text { M1 } & \\ \text { A1 } & \\ \text { M1 } & \\ \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & \mathbf{6} \end{array}$ | Based only on above eqns or $\frac{\mathrm{d} x}{\mathrm{~d} t}=x^{\frac{1}{2}},-x^{\frac{1}{2}}$ <br> Other than omission of ' $c$ ' <br> or substitute $(5,1)$ <br> or substitute $(0,2)$ <br> [1 d.p. requested in question] |

(i) Use $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\frac{\mathrm{d} y}{\mathrm{~d} t}}{\frac{\mathrm{~d} x}{\mathrm{~d} t}}$ or $\frac{\frac{d y}{\phi}}{\frac{\mathrm{~d} x}{\phi}}$
$=\frac{2 t}{3 t^{2}}$ or $\frac{2 p}{3 p^{2}}$
Find eqn tgt thro $\left(p^{3}, p^{2}\right)$ or $\left(t^{3}, t^{2}\right)$,their gradient
$3 p y-2 x=p^{3} \quad \mathbf{A G}$
-------------------------------------------------------
Satis attempt to find at least 1 root/factor
Any one root
All 3 roots
$(-1,1),(-64,16)$ and $(125,25)$

10


## 4725 Further Pure Mathematics 1

\begin{tabular}{|c|c|c|c|c|}
\hline 1 \& \begin{tabular}{l}
(i) \\
(ii) \(\left(\begin{array}{cc}1 \& 0 \\ -1 \& 1\end{array}\right)\)
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
B1 B1
\end{tabular} \& 2

2

4 \& | For 2 other correct vertices seen, correct direction of shear seen For completely correct diagram, must include scales |
| :--- |
| Each column correct | <br>

\hline 2 \& $$
\begin{aligned}
& \frac{a}{6} n(n+1)(2 n+1)+b n \\
& a=6 \quad b=-3
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \hline \text { M1 } \\
& \text { A1 } \\
& \text { M1 } \\
& \text { A1 A1 }
\end{aligned}
$$

\] \& 5 \& | Consider sum as two separate parts Correct answer a.e.f. |
| :--- |
| Compare co-efficients Obtain correct answers | <br>


\hline 3 \& | (i) $7 u^{3}+24 u^{2}-3 u+2=0$ |
| :--- |
| (ii) EITHER |
| correct value is $-\frac{3}{7}$ |
| OR |
| correct value is $-\frac{3}{7}$ | \& | M1 |
| :--- |
| A1 |
| M1 |
| Alft |
| M1 |
| A1 | \& 2

2

2 \& | Use given substitution Obtain correct equation a.e.f. |
| :--- |
| Required expression related to new cubic Their c/their a |
| Use $\frac{\alpha+\beta+\gamma}{\alpha \beta \gamma}$ or equivalent |
| Obtain correct answer | <br>

\hline 4 \& | (i) $\begin{gathered}z^{*}=3+4 \mathrm{i} \\ 21+12 \mathrm{i}\end{gathered}$ |
| :--- |
| (ii) $3-5$ i $-16-30 i$ |
| (iii) $\frac{9}{25}+\frac{12}{25} \mathrm{i}$ | \& \[

$$
\begin{array}{|l|}
\hline \text { B1 } \\
\text { B1 } \\
\\
\text { B1 } \\
\text { B1ft } \\
\text { B1ft } \\
\\
\text { M1 } \\
\text { A1 } \\
\text { A1 }
\end{array}
$$
\] \& 2

3

3

8 \& | Conjugate seen or implied Obtain correct answer |
| :--- |
| Correct $z-\mathrm{i}$ or expansion of $(\mathrm{z}-\mathrm{I})^{2}$ seen |
| Real part correct |
| Imaginary part correct |
| Multiply by conjugate |
| Numerator correct |
| Denominator correct | <br>

\hline 5 \& | (i) $\left(\begin{array}{c}-13 \\ 1 \\ -10\end{array}\right)$ |
| :--- |
| (ii) $\left(\begin{array}{ccc}8 & 16 & -4 \\ 0 & 0 & 0 \\ 6 & 12 & -3\end{array}\right)$ |
| (iii) (8) | \& | B1 |
| :--- |
| B1 |
| M1 |
| A1A1A1 |
| M1 |
| A1 | \& 2

4
4

2

8 \& | 4B seen or implied or 2 elements correct Obtain correct answer |
| :--- |
| Obtain a $3 \times 3$ matrix Each row (or column) correct |
| Obtain a single value Obtain correct answer, must have matrix | <br>

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline 6 \& \begin{tabular}{l}
(i) \\
(ii)
\[
2 \sqrt{3}+2 \mathrm{i}
\]
\end{tabular} \& \[
\begin{array}{|l}
\hline \text { B1 } \\
\\
\text { B1 } \\
\text { M1 } \\
\text { A1 }
\end{array}
\] \& 5

3

8 \& | Horizontal straight line in 2 quadrants |
| :--- |
| Through ( 0,2 ) |
| Straight line |
| Through $O$ with positive slope |
| In $1^{\text {st }}$ quadrant only |
| State or obtain algebraically that $y=2$ |
| Use suitable trigonometry |
| Obtain correct answer a.e.f. decimals OK must be a complex number | <br>

\hline 7 \& | (i) $a=-6$ |
| :--- |
| (ii) $\quad \mathbf{A}^{-1}=\frac{1}{a+6}\left(\begin{array}{cc}1 & -3 \\ 2 & a\end{array}\right)$ $x=\frac{4}{a+6}, y=\frac{2-a}{a+6}$ | \& M1

A1
B1
B1ft
M1
A1ft
A1ft \& 2

5

7 \& | Use $\operatorname{det} \mathbf{A}=0$ |
| :--- |
| Obtain correct answer |
| Both diagonals correct |
| Divide by det A |
| Premultiply column by $\mathbf{A}^{-1}$, no other method Obtain correct answers from their $\mathbf{A}^{-1}$ | <br>

\hline 8 \& | (i) $u_{2}=4, u_{3}=9, u_{4}=16$ |
| :--- |
| (ii) $u_{n}=n^{2}$ |
| (iii) | \& | M1 |
| :--- |
| A1 |
| B1 |
| B1 |
| M1 |
| A1 |
| A1 | \& 2

1

4

7 \& | Obtain next terms |
| :--- |
| All terms correct |
| Sensible conjecture made |
| State that conjecture is true for $n=1$ or 2 |
| Find $u_{n+1}$ in terms of n |
| Obtain $(n+1)^{2}$ |
| Statement of Induction conclusion | <br>

\hline 9 \& | (i) $\alpha^{3}+3 \alpha^{2} \beta+3 \alpha \beta^{2}+\beta^{3}$ |
| :--- |
| (ii) Either $\alpha+\beta=5, \alpha \beta=7$ $\alpha^{3}+\beta^{3}=20$ $x^{2}-20 x+343=0$ |
| Or $\begin{aligned} & u^{\frac{2}{3}}-5 u^{\frac{1}{3}}+7=0 \\ & u^{3}-20 u+343=0 \end{aligned}$ | \& | M1 |
| :--- |
| A1 |
| B1 B1 |
| M1 |
| A1 |
| M1 |
| A1ft |
| M1 A1 |
| M2 |
| A2 | \& 2

6

8 \& | Correct binomial expansion seen Obtain given answer with no errors seen |
| :--- |
| State or use correct values |
| Find numeric value for $\alpha^{3}+\beta^{3}$ |
| Obtain correct answer |
| Use new sum and product correctly in quadratic expression |
| Obtain correct equation |
| Substitute $x=u^{\frac{1}{3}}$ |
| Obtain correct answer |
| Complete method for removing fractional |
| powers |
| Obtain correct answer | <br>

\hline
\end{tabular}



## 4726 Further Pure Mathematics 2

1

2 (i) Clearly verify in $y=\cos ^{-1} x$
Clearly verify in $y=1 / 2 \sin ^{-1} x$
(ii) Write down at least one correct diff'al

Get gradient of -2
Get gradient of 1

M1 Reasonable attempt at chain at any stage
M1 Reasonable attempt at quotient/product
B1 Any one correct from correct working
A1 All three correct from correct working
M1 Using their values in $a \mathrm{f}(0)+b \mathrm{f}^{\prime}(0) x+c \mathrm{f}^{\prime \prime}(0) x^{2}$; may be implied
A1 $\sqrt{ }$ From their values; must be quadratic

B1 i.e. $x=1 / 2 \sqrt{ } 3, y=\cos ^{-1}(1 / 2 \sqrt{ } 3)=1 / 6 \pi$, or similar
B1 Or solve $\cos y=\sin 2 y$
SR Allow one B1 if not sufficiently clear detail
M1 Or reasonable attempt to derive; allow $\pm$
A1 cao
A1 cao

3 (i) Get $y$-values of 3 and $\sqrt{ } 28$
Show/explain areas of two rectangles equal
$y$-value $\times 1$, and relate to $A$
Diagram may be used
(ii) Show $A>0.2\left(\sqrt{ }\left(1+2^{3}\right)+\sqrt{ }\left(1+2.2^{3}\right)+\ldots\right.$

$$
. . V(1+2.83)) \quad \text { M1 Clear areas attempted below curve (5 values) }
$$

$$
=3.87(28)
$$

A1 To min. of 3 s.f.
Show $A<0.2\left(\sqrt{ }\left(1+2.2^{3}\right)+\sqrt{ }\left(1+2.4^{3}\right)+\ldots\right.$
$\left.\ldots+\sqrt{ }\left(1+3^{3}\right)\right)$
$=4.33(11)<4.34$
M1 Clear areas attempted above curve (5 values)
A1 To min. of 3 s.f.

4 (i) Correct formula with correct $r$
Expand $r^{2}$ as $\mathrm{A}+\mathrm{Bsec} \theta+\mathrm{Csec}^{2} \theta$
M1 May be implied
M1 Allow B = 0
Get $C \tan \theta$
Use correct limits in their answer
Limits to ${ }^{1 / 12} \pi+2 \ln (\sqrt{ } 3)+2 \sqrt{3} / 3$
B1
M1 Must be 3 terms
A1 AEEF; simplified
(ii) Use $x=r \cos \theta$ and $r^{2}=x^{2}+y^{2}$

Eliminate $r$ and $\theta$
$\operatorname{Get}(x-2) \sqrt{ }\left(x^{2}+y^{2}\right)=x$
B1 Or derive polar form from given equation
M1 Use their definitions
A1 A.G.

6 (i) Attempt division/equate coeff.
Get $a=2, b=-9$
Derive/quote $x=1$
(ii) Write as quadratic in $x$

Use $b^{2} \geq 4 a c$ (for real $x$ )
Get $y^{2}+14 y+169 \geq 0$
Attempt to justify positive/negative
Get $(y+7)^{2}+120 \geq 0-$ true for all $y$
(ii) Explain use of tangent for next approx. B1 Tangents at successive approx. give $x>1$ B1
(iii) Attempt correct use of $\mathrm{N}-\mathrm{R}$ with their derivative
Get $x_{2}=-1$
Get -0.6839, -0.5775, (-0.5672...)
Continue until correct to 3 d.p.
Get -0.567

A1 Allow substitution of $x=1$

A1 $\sqrt{ }$
A1 To 3 d.p. minimum
M1 May be implied
A1 cao
M1 To lead to some $a x+b$ (allow $b=0$ here)
A1
B1 Must be equations
M1 $\quad\left(2 x^{2}-x(11+y)+(y-6)=0\right)$
M1 Allow <, >
A1

SC Attempt diff; quot./prod. rule M1
Attempt to solve $\mathrm{d} y / \mathrm{d} x=0 \quad$ M1
Show $2 x^{2}-4 x+17=0$ has no real roots e.g. $b^{2}-4 a c<0 \mathrm{~A} 1$
Attempt to use no t.p. M1
Justify all $y$ e.g. consider
asymptotes and approaches A1

M1 Reasonable attempt at parts
A1
B1 Include use of limits seen
Clearly get A.G.

B1 Justified
M1 Clear attempt to use their first line above
A1
(iii) See $2 I_{2}=2^{-1}+I_{1}$

B1
Work out $I_{1}=1 / 4 \pi$
M1
A1

Quote/derive $\tan ^{-1} x$

8 (i) Use correct exponential for $\sinh x$
Attempt to expand cube of this
Correct cubic
Clearly replace in terms of sinh
(ii) Replace and factorise

Attempt to solve for $\sinh ^{2} x$
Get $k>3$
(iii) Get $x=\sinh ^{-1} c$

Replace in ln equivalent
Repeat for negative root

B1
M1 Must be 4 terms
A1
B1 (Allow RHS $\rightarrow$ LHS or RHS $=$ LHS separately)

M1 Or state $\sinh x \neq 0$
M1 $\quad(=1 / 4(k-3))$ or for $k$ and use $\sinh ^{2} x>0$
A1 Not $\geq$
M1 $(c= \pm 1 / 2)$; allow $\sinh x=c$
A1 $\sqrt{ }$ As $\ln (1 / 2+\sqrt{5} / 4)$; their $x$
A1 $\sqrt{ }$ May be given as neg. of first answer (no need for $x=0$ implied)
SR Use of exponential definitions
Express as cubic in $\mathrm{e}^{2 x}=u \quad$ M1
Factorise to $(u-1)\left(u^{2}-3 u+1\right)=0 \mathrm{~A} 1$
Solve for $x=0,1 / 2 \ln \left(3 / 2 \pm \frac{\sqrt{5}}{2}\right)$ A1

M1 Or equivalent; allow $\pm$
Allow use of In equivalent with Chain Rule
A1
B1 e.g. sketch
M1 No need for $c$
A1
M1
A1
M1 Or exponential equivalent
$A 1 \sqrt{ }$ No need for $c$
M1 In their answer
A1 cao $\left(1 / 2 x \sqrt{ }\left(4 x^{2}-1\right)-1 / 4 \cosh ^{-1} 2 x(+c)\right)$

## 4727 Further Pure Mathematics 3

| 1 (a) (i) e.g. $a p \neq p a \Rightarrow$ not commutative | B1 1 | For correct reason and conclusion |
| :---: | :---: | :---: |
| (ii) 3 | B1 1 | For correct number |
| (iii) $e, a, b$ | B1 $\mathbf{1}$ | For correct elements |
| (b) $c^{3}$ has order 2 <br> $c^{4}$ has order 3 <br> $c^{5}$ has order 6 | $$ | For correct order <br> For correct order <br> For correct order |
| 2 $\begin{aligned} & m^{2}-8 m+16=0 \\ & \Rightarrow m=4 \\ & \Rightarrow \mathrm{CF}(y=)(A+B x) \mathrm{e}^{4 x} \end{aligned}$ <br> For PI try $y=p x+q$ $\begin{aligned} & \Rightarrow-8 p+16(p x+q)=4 x \\ & \Rightarrow p=\frac{1}{4} \quad q=\frac{1}{8} \\ & \Rightarrow \text { GS } y=(A+B x) \mathrm{e}^{4 x}+\frac{1}{4} x+\frac{1}{8} \end{aligned}$ | M1 <br> A1 <br> A1 $\sqrt{ }$ <br> M1 <br> A1 A1 <br> B1 $\sqrt{ } 7$ <br> 7 | For stating and attempting to solve auxiliary eqn <br> For correct solution <br> For CF of correct form. f.t. from $m$ <br> For using linear expression for PI <br> For correct coefficients <br> For GS $=\mathrm{CF}+\mathrm{PI}$. Requires $y=$. f.t. from CF and PI with 2 arbitrary constants in CF and none in PI |
| 3 (i) line segment $O A$ | $\begin{array}{ll} \text { B1 } & \\ \text { B1 } & \mathbf{2} \\ \hline \end{array}$ | For stating line through $O O R A$ For correct description AEF |
| $\text { (ii) } \begin{aligned} (\mathbf{r}-\mathbf{a}) & \times(\mathbf{r}-\mathbf{b})=\overrightarrow{A P} \times \overrightarrow{B P} \\ & =\|A P\|\|B P\| \sin \pi \cdot \hat{\mathbf{n}}=\mathbf{0} \end{aligned}$ | B1 <br> B1 2 | For identifying $\mathbf{r}-\mathbf{a}$ with $\overrightarrow{A P}$ and $\mathbf{r}-\mathbf{b}$ with $\overrightarrow{B P}$ Allow direction errors <br> For using $\times$ of 2 parallel vectors $=\mathbf{0}$ <br> $O R \sin \pi=0$ or $\sin 0=0$ <br> in an appropriate vector expression |
| (iii) line through $O$ parallel to $A B$ | B1 <br> B1 <br> B1 3 <br> 7 | For stating line <br> For stating through $O$ <br> For stating correct direction <br> SR For $\overrightarrow{A B}$ or $\overrightarrow{B A}$ allow B1 B0 B1 |
| 4 $\begin{aligned} & (C+\mathrm{i} S=) \int_{0}^{\frac{1}{2} \pi} \mathrm{e}^{2 x}(\cos 3 x+\mathrm{i} \sin 3 x)(\mathrm{d} x) \\ & \cos 3 x+\mathrm{i} \sin 3 x=\mathrm{e}^{3 \mathrm{i} x} \\ & \int_{0}^{\frac{1}{2} \pi} \mathrm{e}^{(2+3 \mathrm{i}) x}(\mathrm{~d} x)=\frac{1}{2+3 \mathrm{i}}\left[\mathrm{e}^{(2+3 \mathrm{i}) x}\right]_{0}^{\frac{1}{2} \pi} \\ & =\frac{2-3 \mathrm{i}}{4+9}\left(\mathrm{e}^{(2+3 \mathrm{i}) \frac{1}{2} \pi}-\mathrm{e}^{0}\right)=\frac{2-3 \mathrm{i}}{13}\left(-\mathrm{ie}^{\pi}-1\right) \\ & =\left\{\frac{1}{13}\left(-2-3 \mathrm{e}^{\pi}+\mathrm{i}\left(3-2 \mathrm{e}^{\pi}\right)\right\}\right. \\ & C=-\frac{1}{13}\left(2+3 \mathrm{e}^{\pi}\right) \\ & S=\frac{1}{13}\left(3-2 \mathrm{e}^{\pi}\right) \end{aligned}$ | B1 <br> M1* <br> A1 <br> A1 <br> M1 <br> (dep*) <br> M1 <br> (dep*) <br> A1 <br> A1 | For using de Moivre, seen or implied <br> For writing as a single integral in exp form For correct integration (ignore limits) <br> For substituting limits correctly (unsimplified) <br> (may be earned at any stage) <br> For multiplying by complex conjugate of $2+3 \mathrm{i}$ <br> For equating real and/or imaginary parts <br> For correct expression AG <br> For correct expression |


| 5 | M1 <br> A1 <br> M1 <br> A1 <br> M1 <br> A1 | For correct process for finding integrating factor $O R$ for multiplying equation through by $x$ <br> For writing DE in this form (may be implied) <br> For integration by parts the correct way round <br> For 1st term correct <br> For their 1st term and attempt at integration of $\sin _{\cos } k x$ <br> For correct expression for $y$ |
| :---: | :---: | :---: |
| $\begin{aligned} & \text { (ii) }\left(\frac{1}{4} \pi, \frac{2}{\pi}\right) \Rightarrow \frac{2}{\pi}=\frac{1}{\pi}+\frac{4 c}{\pi} \Rightarrow c=\frac{1}{4} \\ & \Rightarrow y=-\frac{1}{2} \cos 2 x+\frac{1}{4 x} \sin 2 x+\frac{1}{4 x} \end{aligned}$ | M1 <br> A1 2 | For substituting $\left(\frac{1}{4} \pi, \frac{2}{\pi}\right)$ in solution <br> For correct solution. Requires $\square$ $y=$ |
| (iii) $(y \approx)-\frac{1}{2} \cos 2 x$ | B1 $\sqrt{ } 1$ <br> 9 | For correct function AEF f.t. from (ii) |
| 6 (i) <br> METHOD 1 <br> State $B=(-1,-7,2)+t(1,2,-2)$ <br> On plane $\Rightarrow(-1+t)+2(-7+2 t)-2(2-2 t)=-1$ $\begin{aligned} & \Rightarrow t=2 \Rightarrow B=(1,-3,-2) \\ & A B=\sqrt{2^{2}+4^{2}+4^{2}} \text { OR } 2 \sqrt{1^{2}+2^{2}+2^{2}}=6 \end{aligned}$ | M1 <br> M1 <br> M1 <br> A1 <br> A1 5 | Either coordinates or vectors may be used Methods 1 and 2 may be combined, for a maximum of 5 marks <br> For using vector normal to plane <br> For substituting parametric form into plane <br> For solving a linear equation in $t$ <br> For correct coordinates <br> For correct length of $A B$ |
| METHOD 2 $\begin{aligned} & A B=\left\|\frac{-1-14-4+1}{\sqrt{1^{2}+2^{2}+2^{2}}}\right\|=6 \\ & O R \quad A B=\mathbf{A C} \cdot \mathbf{A B}=\frac{[6,7,1] \cdot[1,2,-2]}{\sqrt{1^{2}+2^{2}+2^{2}}}=6 \\ & B=(-1,-7,2) \pm 6 \frac{(1,2,-2)}{\sqrt{1^{2}+2^{2}+2^{2}}} \\ & B=(-1,-7,2) \pm(2,4,-4) \\ & B=(1,-3,-2) \end{aligned}$ | M1 <br> A1 <br> M1 <br> B1 <br> A1 | For using a correct distance formula <br> For correct length of $A B$ <br> For using $B=A+$ length of $A B \times$ unit normal <br> For checking whether + or - is needed (substitute into plane equation) <br> For correct coordinates (allow even if B0) |
| (ii) Find vector product of any two of $\pm[6,7,1], \pm[6,-3,0], \pm(0,10,1)$ <br> Obtain $k[1,2,-20]$ $\begin{gathered} \theta=\cos ^{-1} \frac{\mid[1,2,-2] \cdot[1,2,-20]}{\sqrt{1^{2}+2^{2}+2^{2}} \sqrt{1^{2}+2^{2}+20^{2}}} \\ \theta=\cos ^{-1} \frac{45}{\sqrt{9} \sqrt{405}}=41.8^{\circ}(41.810 \ldots, 0.72972 \ldots) \end{gathered}$ | $$ | For finding vector product of two relevant vectors <br> For correct vector $\mathbf{n}$ <br> For using scalar product of two normal vectors For stating both moduli in denominator <br> For correct scalar product. f.t. from $\mathbf{n}$ For correct angle |


| 7 (i) (a) $\sin \frac{6}{8} \pi=\frac{1}{\sqrt{2}}, \sin \frac{2}{8} \pi=\frac{1}{\sqrt{2}}$ | B1 | For verifying $\theta=\frac{1}{8} \pi$ |
| :---: | :---: | :---: |
| (b) $\theta=\frac{3}{8} \pi$ | M1 $\text { A1 } 2$ | For sketching $y=\sin 6 \theta$ and $y=\sin 2 \theta$ for $0, \theta, \frac{1}{2} \pi$ <br> $O R$ any other correct method for solving $\sin 6 \theta=\sin 2 \theta$ for $\theta \neq k \frac{\pi}{2}$ <br> $O R$ appropriate use of symmetry $O R$ attempt to verify a reasonable guess for $\theta$ For correct $\theta$ |
| (ii) $\operatorname{Im}(c+\mathrm{i} s)^{6}=6 c^{5} s-20 c^{3} s^{3}+6 c s^{5}$ $\begin{gathered} \sin 6 \theta=\sin \theta\left(6 c^{5}-20 c^{3}\left(1-c^{2}\right)+6 c\left(1-c^{2}\right)^{2}\right) \\ \sin 6 \theta=\sin \theta\left(32 c^{5}-32 c^{3}+6 c\right) \\ \sin 6 \theta=2 \sin \theta \cos \theta\left(16 c^{4}-16 c^{2}+3\right) \\ \sin 6 \theta=\sin 2 \theta\left(16 \cos ^{4} \theta-16 \cos ^{2} \theta+3\right) \end{gathered}$ | M1 <br> A1 <br> M1 <br> A1 <br> A1 | For expanding $(c+\mathrm{i} s)^{6}$; at least 3 terms and 3 binomial coefficients needed <br> For 3 correct terms <br> For using $s^{2}=1-c^{2}$ <br> For any correct intermediate stage <br> For obtaining this expression correctly <br> AG |
| (iii) $16 c^{4}-16 c^{2}+3=1$ $\Rightarrow c^{2}=\frac{2 \pm \sqrt{2}}{4}$ <br> - sign requires larger $\theta=\frac{3}{8} \pi$ | M1 A1 <br> A1 3 11 | For stating this equation AEF <br> For obtaining both values of $c^{2}$ <br> For stating and justifying $\theta=\frac{3}{8} \pi$ <br> Calculator OK if figures seen |


| $8 \text { (i) } \begin{array}{rl} \text { Group } A: \quad e=6 \\ \text { Group } B: \quad e=1 \\ \text { Group } C: & e=2^{0} \text { OR } 1 \\ \text { Group } D: ~ & e=1 \end{array}$ | \% B1 | For any two correct identities For two other correct identities AEF for $D$, but not " $m=n$ " |
| :---: | :---: | :---: |
| (ii) <br> orders of elements 1, 2, 4, 4 <br> $O R$ cyclic group $\begin{aligned} & A \not \equiv B \\ & B \neq C \\ & A \cong C \end{aligned}$ | B1* <br> B1* <br> B1 <br> (dep*) <br> B1 <br> (dep*) <br> B1 <br> ${ }^{\left(\text {dep* }^{*}\right)}$ | For showing group table $O R$ sufficient details of orders of elements $O R$ stating cyclic / non-cyclic / Klein group (as appropriate) <br> for one of groups $A, B, C$ for another of groups $A, B, C$ <br> For stating non-isomorphic with sufficient detail <br> For stating non-isomorphic relating to the first 2 marks |
| (iii) $\frac{1+2 m}{1+2 n} \times \frac{1+2 p}{1+2 q}=\frac{1+2 m+2 p+4 m p}{1+2 n+2 q+4 n q}$ $=\frac{1+2(m+p+2 m p)}{1+2(n+q+2 n q)} \equiv \frac{1+2 r}{1+2 s}$ | M1* <br> M1 (dep*) <br> A1 <br> A1 4 | For considering product of 2 distinct elements of this form <br> For multiplying out <br> For simplifying to form shown <br> For identifying as correct form, so closed <br> SR $\frac{\text { odd }}{\text { odd }} \times \frac{\text { odd }}{\text { odd }}=\frac{\text { odd }}{\text { odd }}$ earns full credit <br> SR If clearly attempting to prove commutativity, allow at most M1 |
| (iv) Closure not satisfied Identity and inverse not satisfied | $\begin{array}{\|ll} \hline \text { B1 } & \\ \text { B1 } & 2 \end{array}$ | For stating closure <br> For stating identity and inverse <br> SR If associativity is stated as not satisfied, then award at most B 1 B 0 OR B0 B1 |

## 4728 Mechanics 1

| 1 | $70 \times 9.8$ or 70 g | B1 | $=686$ |
| :--- | :--- | :--- | :--- |
|  | $70 \times 0.3$ | B1 | $=21$ |
|  | $686+21$ | M1 | $+\operatorname{cvs}[70(9.8+0.3)$ gets B1B1M1] |
|  | 707 N | A1 |  |
|  |  | $[4]$ |  |


| 2 | $+/-(40 \times 4-60 \times 3)$ <br> $+/-([40+60] \mathrm{v}$ <br> $+/-(40 \times 4-60 \times 3)=+/-([40+60] \mathrm{v}$ <br> Speed $=0.2 \mathrm{~ms}^{-1}$ | B1 | Difference of terms, accept with g |
| :--- | :--- | :--- | :--- |
|  |  | B1 | Sum of terms, accept with g. |
| Same as heavier or opposite lighter/"she" | Accept inclusion of g in equation. |  |  |
|  |  | A1 | Not if g used. SR 40x4-60x3=[40 +60$] \mathrm{v} ;$ <br> v=0.2, as heavier, award 5 marks |
|  | B1 | "Left" requires diagram for B1 <br> If same direction before collision award <br> B0B1M1A0B0 |  |


| 3 i |  | M1 | Applies Pythagoras, requires +. |
| :---: | :---: | :---: | :---: |
|  | $\sqrt{ }\left(12^{2}+15^{2}\right)$ | A1 | Applis Py |
|  | 19.2 N | A1 |  |
|  |  | M1 | trig and R included between X and Y |
|  | $\tan \theta=12 / 15, \tan \theta=15 / 12, \sin \theta=12 / 19.2, \cos \theta=15 / 19.2$ | A1 | Accept cv 19.2 |
|  | Bearing $=038.7^{\circ}$ | A1 <br> [6] | Accept 039 or 39 or art 39 from below (not given if X and Y transposed) |
| 3 ii | $E=19.2$ | B1ft | ft cv 19.2 |
|  | Bearing $=180+38.7=219^{\circ}$ | B1ft [2] | $180+$ cv $38.7(-360)$ or correct answer |


| 4 i | $\mathrm{v}=\mathrm{dx} / \mathrm{dt}$ |  | M1 | Uses differentiation, may be seen in (ii) |
| :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{v}=4 \mathrm{t}^{3}-8 \mathrm{x} 2 \mathrm{t}$ |  | A1 | Accept with +c |
|  | $\mathrm{v}(2)=4 \times 2^{3}-8 \times 2 \times 2$ |  | M1 | Substitutes 2 in cv v, explicit |
|  | = 0 | AG | A1 | A0 if +c |
|  | $x(2)=2^{4}-8 \times 2^{2}+16=0$ | AG | $\begin{aligned} & \mathrm{B} 1 \\ & {[5]} \end{aligned}$ | Substitutes 2 in displacement, explicit |
| 4 ii | $\mathrm{a}=\mathrm{dv} / \mathrm{dt}$ |  | M1 | Uses differentiation of v formula |
|  | $\mathrm{a}=12 \mathrm{t}^{2}-16$ |  | A1 | Accept with +c |
|  | $\mathrm{a}(2)=12 \times 2^{2}-16=32 \mathrm{~ms}^{-2}$ |  | A1 $[3]$ | A0 with +c |


| 5ia | $\begin{aligned} & 250 \mathrm{a}=-150 \\ & \mathrm{a}=-0.6 \mathrm{~ms}^{-2} \end{aligned}$ | $\begin{aligned} & \hline \mathrm{M} 1 \\ & \mathrm{~A} 1 \\ & {[2]} \end{aligned}$ | Values used in N2L for trailer $\mathrm{F}=+/-150$ Or -ve convincingly argued |
| :---: | :---: | :---: | :---: |
| 5 ib | $\begin{aligned} & 900 x-0.6=D-600 \text { or }(900+250) x-0.6=D-600-150 \\ & D=60 N \end{aligned}$ | M1 <br> A1 <br> A1 <br> [3] | Applies N2L to car or car/trailer with correct number of forces (including T if $\mathrm{T}=0$ used later) |
| 5 ic | $\begin{aligned} & 15^{2}=18^{2}+2 \mathrm{x}(-0.6) \mathrm{s} \\ & \mathrm{~s}=82.5 \mathrm{~m} \end{aligned}$ | $\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$ <br> [2] | Uses $\mathrm{v}^{2}=\mathrm{u}^{2}+2(+/-0.6) \mathrm{s}$ with 15,18 Positive, allow from $18^{2}=15^{2}+2 \times 0.6 \mathrm{~s}$ |
| 5iia | $(900+250) \mathrm{a}=980-600-150$ | M1 A1 | Applies N2L to car+trailer with F(driving) F (resisting), F (wt cmpt-allow without g ), or each part, as above and T . $900 \mathrm{a}=980-600+/-900 \times 9.8 \sin 3-T$ |
| 5 iib | $\mathrm{a}=0.713 \mathrm{~ms}^{-2} \quad+/-(900+250) \times 9.8 \sin 3$ | A1 A1 <br> [4] | $250 \mathrm{a}=\mathrm{T}-150+/-250 \mathrm{x} 9.8 \sin 3$ <br> Allow (art) 0.71 from correct work |
|  | $250 \times 0.713=\mathrm{T}-150+250 \times 9.8 \sin 3$ | $\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$ | N2L for trailer, cv a, with correct number of forces of correct type. Or for car $900 \times 0.713=-\mathrm{T}-600+900 \times 9.8 \sin 3+980$ |
|  | $\mathrm{T}=200 \mathrm{~N}$ | A1 <br> [3] | Anything rounding to 200 (3sf) |


| 6 i | $4.9=\mu \times 14.7$ | M1 | Uses F $=\mu \mathrm{R}$ |
| :---: | :---: | :---: | :---: |
|  | $\mu=1 / 3 \quad$ AG | A1 <br> [2] | Allow 0.333 or 0.3 recurring |
| 6iia |  | M1 | 3 force vertical equation |
|  | $\mathrm{R}+4.9 \sin 30=14.7$ | A1 |  |
|  | $\mathrm{R}=12.25 \mathrm{~N}$ | A1 | Accept 12.2 or 12.3 |
|  | $\mathrm{F}=12.25 \times 1 / 3$ | M1 | Uses $F=\mu \mathrm{R}$ with new R \{may be seen in |
|  | $\mathrm{F}=4.08(333 .) \mathrm{N} \quad.[$ or 49/12 N ] | $\begin{aligned} & \mathrm{A} 1 \\ & {[5]} \end{aligned}$ | \{part b |
| 6 iib | $\mathrm{m}=14.7 / 9.8=1.5 \mathrm{~kg}$ | B1 |  |
|  |  | M1 | N2L horizontally with 2 relevant forces, including $4.9 \sin / \cos 30$ |
|  | $4.9 \cos 30-4.08(333 .)=.1.5 \mathrm{a}$ | A1 | Allow cv(F) $\boldsymbol{S R} \boldsymbol{R}$ Award A1 if m=14.7 used |
|  | $\mathrm{a}=0.107 \mathrm{~ms}^{-2}$ | A2 ${ }_{\text {[5] }}$ | $\boldsymbol{S R}$ A1 for $0.11,0.109$ or art 0.011 from $\mathrm{m}=14.7$ |
| 6 iii | $\mu \mathrm{R}=(14.7-4.9 \cos 30) / 3$ | B1 | 3.49, accept 3.5 |
|  | Horizontal component of force $=4.9 \sin 30$ | B1 | 2.45 , accept 2.4 or 2.5 |
|  | Horizontal component of force < 3 R | M1 | Comparing two values |
|  | Friction $=2.45 \mathrm{~N}$ | A1 ${ }_{\text {[4] }}$ | Not 2.4 or 2.5; Explicit ( M1 essential) |


| 7 i | $\mathrm{s}=0.5 \times 1.4 \times 0.8^{2}$ | M1 | Uses $\mathrm{s}=0.5 \mathrm{x} 1.4 \mathrm{t}^{2}$ |
| :---: | :---: | :---: | :---: |
|  | $\mathrm{s}=0.448 \mathrm{~m}$ | A1 | Not 0.45 |
|  | $\mathrm{v}=1.4 \times 0.8$ | M1 | Uses $\mathrm{v}=1.4 \mathrm{t}$ |
|  | $\mathrm{v}=1.12 \mathrm{~ms}^{-1}$ | A1 ${ }_{\text {[4] }}$ |  |
| 7 ii | $0^{2}=1.12^{2}-2 \times 9.8 \mathrm{~s}$ | M1 | Uses $0^{2}=\mathrm{u}^{2}-2 \mathrm{gs}$ or $\mathrm{u}^{2}=2 \mathrm{gs}$ |
|  | $\mathrm{s}=0.064 \mathrm{~m}$ | A1 | Allow verification |
|  | $0=1.12-9.8 t \quad(t=0.114 s)$ | M1 | or $0.064=1.12 \mathrm{t}-4.9 \mathrm{t}^{2}$ |
|  | $\mathrm{t}=(0.114+0.8)=0.914 \mathrm{~s}$ | A1 <br> [4] | Allow 0.91 \{or $0=1.12 \mathrm{t}-4.9 \mathrm{t}^{2}$ and halve t |
| 7iii | Scalene triangle, base on $t$ axis | B1 | NB Award A1 for 0.91 on t axis if total |
|  | right edge steeper and terminates on axis, or crosses axis at $\mathrm{t}=0.91$ | B1 <br> [2] | time not given in (ii) |
| 7iv |  | M1 | Uses N2L for A or B with attempt at 2 forces |
|  |  | A1 | Either |
|  | $1.4 \mathrm{xA}=9.8 \mathrm{xA}-5.88$ or $1.4 \mathrm{xB}=5.88-9.8 \mathrm{xB}$ | A1 |  |
|  | $\mathrm{A}=0.7$ | A1 | Not 0.53 |
| 7 va | $B=0.525$ | [4] |  |
|  | $\mathrm{T}=0.5 \times 9.8+2 \times 5.88$ | M1 | Uses tension and 0.5 g without particle weights |
| 7 vb | $\mathrm{T}=16.66 \mathrm{~N}$ | $\begin{aligned} & \mathrm{A} 1 \\ & {[2]} \end{aligned}$ | Allow 16.7 |
|  | $\mathrm{T}=4.9 \mathrm{~N}$ | B 1 $[1]$ |  |

## 4729 Mechanics 2

| $\mathbf{1}$ (i) | $12 \times \cos 55^{\circ}$ | M1 |  |
| :--- | :--- | :--- | :--- |
|  | $6.88 \mathrm{~m} \mathrm{~s}^{-1}$ | A1 2 |  |
| (ii) | $12 \times \cos 55^{\circ} \times 0.65$ <br>  <br>  $4.47 \mathrm{~m} \mathrm{~s}^{-1}$ | M1 |  |


| $\mathbf{2}$ | $\mathrm{F}=0.2 \mathrm{mg} \cos 30^{\circ}$ | M1 | $=$ |  |
| :--- | :--- | :--- | :--- | :--- |
|  |  | A1 | $=(1.6974 \mathrm{~m})(49 \sqrt{ } 3 / 50 \mathrm{~m})$ |  |
|  | $0.2 \mathrm{mg} \cos 30^{\circ} \mathrm{xd}$ | B1 | $\mathrm{a}=0.2 \mathrm{~g} \cos 30^{\circ}+\mathrm{gsin} 30^{\circ}$ |  |
| $\mathrm{mg} \mathrm{x} \mathrm{dx} \mathrm{\sin 30}^{\circ}$ | B1 | $\mathrm{a}=( \pm) 6.60$ |  |  |
| $\mathrm{~d}=1 / 2 \times 25 /\left(0.2 \mathrm{x} 9.8 \cos 30^{\circ}+9.8 \mathrm{xsin} 30^{\circ}\right)$ | M1 | $0=5^{2}-2 \mathrm{x} 6.60 \mathrm{~d}$ | $\mathbf{6}$ |  |


| $\mathbf{3}$ | direction of R perp. to wall | B 1 |  |  |
| :--- | :--- | :--- | :--- | :--- |
|  | R at $70^{\circ}$ to $\operatorname{rod}$ | B1 | $10^{\circ}$ to horiz. |  |
|  | $0.8 \times 25 \cos 60^{\circ}=1.6 \times \mathrm{R} \sin 70^{\circ}$ | M 1 | moments about A |  |
|  | $0.8 \times 25 \cos 60^{\circ}$ | A1 |  |  |
| $1.6 \times \mathrm{R} \sin 70^{\circ}$ | A1 |  | $\mathbf{6}$ |  |


| $\mathbf{4}$ (i) | $45000 / \mathrm{v}=\mathrm{kv}$ <br> $\mathrm{k}=50$ | M1 <br> A1 2 | AG |
| :--- | :--- | :--- | :--- |
| (ii) | $45000 / 20-50 \times 20=1200 \mathrm{a}$ | M1 |  |
|  |  | A1 |  |
| (iii) | $\mathrm{P}=1.04 \mathrm{~m} \mathrm{~s}^{-2}$ | A1 3 |  |
|  | 41900 W | M1 |  |
|  | A1 |  |  |


| 5 (i) | $\begin{aligned} & 2 \mathrm{mu}-3 \mathrm{kmu}=-\mathrm{mu}+\mathrm{kmv} \\ & \mathrm{v}=\ldots . \\ & \mathrm{v}=3 \mathrm{u}(1-\mathrm{k}) / \mathrm{k} \\ & (0<) \mathrm{k}<1 \end{aligned}$ | $\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } 4 \\ & \hline \end{aligned}$ | attempting to make v the subject $\begin{aligned} & 3 \mathrm{u} / \mathrm{k}-3 \mathrm{u} \\ & \text { not } \leq 1 \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| (ii) | $\begin{aligned} & \mathrm{I}=\mathrm{mu}--2 \mathrm{mu} \\ & 3 \mathrm{mu} \end{aligned}$ | $\begin{array}{ll} \text { M1 } \\ \text { A1 } & 2 \\ \hline \end{array}$ | $\begin{aligned} & \text { or km( } 3 u / k-3 u+3 u) \\ & + \text { only } \end{aligned}$ |
| (iii) | $\begin{aligned} & \mathrm{v}= \pm 3 \mathrm{u} \\ & \mathrm{e}=(\mathrm{u} / 2+3 \mathrm{u}) / 4 \mathrm{u} \\ & \mathrm{e}=7 / 8 \text { or } 0.875 \\ & \hline \end{aligned}$ | B1 <br> M1 <br> A1 3 | 9 |


| $\mathbf{6}$ (i)(a) | $\mathrm{T} \cos 45^{\circ}=2.94$ <br> $\mathrm{~T}=4.16 \mathrm{~N}$ | M1 <br> A1 2 | Resolving vertically <br> AG |
| :--- | :--- | :--- | :--- |
| (b) | $\mathrm{T} \cos 45^{\circ}+\mathrm{T}=0.3 \times 1.96 \omega^{2}$ | M1 | calculates $\mathrm{v}=6.81$ |
|  | $($ res. horiz.) | A1 | $($ Max 2/3) |
|  | $\omega=3.47 \mathrm{rad} \mathrm{s}^{-1}$ | A1 3 |  |
| (ii)(a) | $\mathrm{T} \cos 30^{\circ}+\mathrm{T} \cos 60^{\circ}=2.94$ | M1 | Resolving vertically |
|  | $\mathrm{T}=2.15 \mathrm{~N}$ | A1 |  |
| (b) | Tcos30 $+\mathrm{T} \cos 60^{\circ}=0.3 \mathrm{v}^{2} / 1.5$ <br>  <br>  <br> (res. horiz.) <br> v=3.83 $\mathrm{m} \mathrm{s}^{-1}$ | M1 3 |  |


| 7 (i) | $\begin{aligned} & 0=(175 \sin \theta)^{2}-2 \times 9.8 \times 650 \\ & \theta=40.2^{\circ} \end{aligned}$ | $\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } 3 \end{aligned}$ |  |
| :---: | :---: | :---: | :---: |
| (ii) | $\begin{aligned} & \text { Attempt at } t_{1}, t_{2}, t_{\text {top }} \text { or total } \\ & 5.61,23.65,14.63,29.26 \\ & t_{2}-t_{1} \text { or } 2\left(t_{\text {top }}-t_{1}\right) \text { or } t_{\text {total }}-2 t_{1} \\ & \text { time difference }=18.0 \end{aligned}$ | $\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \hline \end{aligned}$ | $650=175 \sin 55^{\circ} . \mathrm{t}-4.9 \mathrm{t}^{2}$ etc |
| (iii) | $\begin{aligned} & \mathrm{v}_{\mathrm{h}}=175 \cos 55^{\circ}(100.4) \\ & \mathrm{v}_{\mathrm{v}}=175 \sin 55^{\circ}-9.8 \times 5.61 \\ & \text { speed }=\sqrt{ }\left(88.4^{2}+100.4^{2}\right) \\ & 134 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$ | $\begin{array}{\|l\|} \hline \text { B1 } \\ \text { M1 } \\ \text { M1 } \\ \text { A1 } \end{array}$ | $\begin{aligned} & \text { or KE } 1 / 2 \mathrm{mv}^{2} \\ & \text { (B1) PE } m \times 9.8 \times 650 \\ & \mathrm{v}=\sqrt{ }\left(175^{2}-2 \times 9.8 \times 650\right) \end{aligned}$ |


| 8 (i) | $\begin{aligned} & (2 \times 4 x \sin \Pi / 2) / 3 x \Pi / 2 \\ & 1.70 \end{aligned}$ | $\begin{array}{\|l\|} \hline \text { M1 } \\ \text { A1 } \\ \hline \end{array}$ | $\begin{aligned} & \text { or } 4 \mathrm{r} / 3 \Pi \\ & \mathbf{A G} \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| (ii)(a) | $\begin{aligned} & \bar{x} \times \mathrm{xd}\left(8 \times 20-\Pi \times 4^{2} / 2\right)=10 \times 8 \times 20 \mathrm{~d}- \\ & 12 \times \Pi \times 4^{2} / 2 \mathrm{xd} \\ & 10 \times 8 \times 20(\mathrm{~d}) \\ & \left(8 \times 20-\Pi \times 4^{2} / 2\right)(\mathrm{d}) \\ & \left(12 \times \Pi \times 4^{2} / 2\right)(\mathrm{d}) \\ & \bar{x}=9.63 \mathrm{~cm} \end{aligned}$ | $\begin{array}{\|lr\|} \hline \text { M1 } & \\ & \\ \text { A1 } & 5 \end{array}$ | $\begin{aligned} & \text { or } 134.9 \bar{x}= \\ & 64 \times 4+38.9 \times 12+32 \times 18 \quad(1298.8) \\ & 64 \times 4 \\ & 38.9 \times 12 \\ & 32 \times 18 \end{aligned}$ AG |
| (ii)( | $\begin{align*} & \bar{y} \times \mathrm{d}\left(8 \times 20-\Pi \times 4^{2} / 2\right)=4 \times 8 \times 20 \mathrm{~d}- \\ & 1.7 \mathrm{x} \Pi \times 4^{2} / 2 \mathrm{xd} \\ & 4 \times 8 \times 20(\mathrm{~d}) \\ & 1.7 \mathrm{~d} \times \Pi \times 4^{2} / 2  \tag{13.6П}\\ & \bar{y}=4.43 \mathrm{~cm} \\ & \hline \end{align*}$ | $\begin{array}{\|l} \hline \text { M1 } \\ \text { A1 } \\ \text { A1M1 } \\ \text { A1 } 4 \end{array}$ | or $64 \times 4=42.7+38.9 \bar{y}$ $\begin{aligned} & \bar{y}=5.49 \\ & 135 \bar{y}=32 \times 4+38.9 \times 5.49+64 \times 4 \end{aligned}$ |
| (iii) | $\begin{aligned} & 20 \cos 10^{\circ} \times \mathrm{T} \\ & 15 \cos 10^{\circ} \times 9.63 \\ & 15 \sin 10^{\circ} \times 4.43 \\ & 20 \cos 10^{\circ} \mathrm{T}=15 \cos 10^{\circ} \times 9.63- \\ & 15 \sin 10^{\circ} \times 4.43 \quad \text { (needs } 3 \text { parts) } \\ & \mathrm{T}=6.64 \mathrm{~N} \end{aligned}$ | B1 <br> B1 <br> B1 <br> M1 <br> A1 5 | $\begin{aligned} & =\text { or } \\ & 10.6(\mathrm{~A} \text { to com }) \\ & 34.7^{\circ} \angle \mathrm{comAH} \\ & =15 \times 10.6 \mathrm{x} \cos 34.7^{\circ} \end{aligned}$ |

## 4730 Mechanics 3

| 1 | (i) $\quad\left[0.5\left(\mathrm{v}_{\mathrm{x}}-5\right)=-3.5,0.5\left(\mathrm{v}_{\mathrm{y}}-0\right)=2.4\right]$ Component of velocity in x -direction is $-2 \mathrm{~ms}^{-1}$ Component of velocity in $y$-direction is $4.8 \mathrm{~ms}^{-1}$ Speed is $5.2 \mathrm{~ms}^{-1}$ | $\begin{array}{\|l\|} \hline \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ \text { A1 } \end{array}$ | 4 | For using $\mathrm{I}=\mathrm{m}(\mathrm{v}-\mathrm{u})$ in x or y direction AG |
| :---: | :---: | :---: | :---: | :---: |
| SR For candidates who obtain the speed without finding the required components of velocity (max 2/4) |  |  |  |  |
|  | Components of momentum after impact are -1 and 2.4 Ns Hence magnitude of momentum is 2.6 Ns and required speed is $2.6 / 0.5=5.2 \mathrm{~ms}^{-1}$ | $\begin{array}{\|l} \hline \text { B1 } \\ \text { B1 } \end{array}$ |  |  |
|  | (ii) | M1 |  | For using $\mathrm{I}_{\mathrm{y}}=\mathrm{m}\left(0-\mathrm{v}_{\mathrm{y}}\right)$ or $\mathrm{I}_{\mathrm{y}}=-\mathrm{y}$-component of $1^{\text {st }}$ impulse |
|  | Component is -2.4 Ns | A1 | 2 |  |


| 2 | (i) $\begin{aligned} & 50 \times 1 \sin \beta=75 \times 2 \cos \beta \\ & \tan \beta=3 \end{aligned}$ | $\begin{gathered} \hline \text { M1 } \\ \text { A1 } \\ \text { A1 } \end{gathered}$ | 3 | For 2 term equation, each term representing a relevant moment AG |
| :---: | :---: | :---: | :---: | :---: |
|  | (ii) Horizontal force is 75 N Vertical force is 50 N | $\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$ | 2 |  |
|  | (iii) <br> For not more than one error in $\begin{aligned} & \begin{array}{l} \mathrm{Wx} 1 \sin \alpha+50(2 \sin \alpha+1 \sin \beta)= \\ \quad 75(2 \cos \alpha+2 \cos \beta) \text { or } \mathrm{Wx} 1 \sin \alpha+ \\ 50 \times 2 \sin \alpha=75 \times 2 \cos \alpha \\ 0.6 \mathrm{~W}+107.4 \ldots=167.4 \ldots \text { or } 0.6 \mathrm{~W}+60=120 \\ \mathrm{~W}=100 \end{array} \end{aligned}$ | M1 <br> A1 <br> A1 <br> A1 | 4 | For taking moments about A for the whole or for AB only <br> Where $\tan \alpha=0.75$ |



| 4 | $\begin{aligned} & \text { (i) } \quad[\mathrm{mg}-0.49 \mathrm{mv}=\mathrm{ma}] \\ & m v \frac{d v}{d x}=m g-0.49 m v \\ & {\left[\frac{v(d v / d x)}{g-0.49 v}=1\right]} \\ & {\left[\frac{v}{9.8-0.49 v} \equiv \frac{-1}{0.49}\left(\frac{(9.8-0.49 v)-9.8}{9.8-0.49 v}\right)\right]} \\ & \left(\frac{20}{20 .-v}-1\right) \frac{d v}{d x}=0.49 \end{aligned}$ | M1 <br> A1 <br> M1 <br> M1 <br> A1 | 5 | For using Newton's second law <br> For relevant manipulation <br> For synthetic division of v by g-0.49v, or equivalent AG |
| :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & \int \frac{20}{20-v} d v=-20 \ln (20-v) \\ & -20 \ln (20-\mathrm{v})-\mathrm{v}=0.49 \mathrm{x} \\ & {[-20 \ln 20=\mathrm{C}]} \\ & \mathrm{x}=40.8(\ln 20-\ln (20-\mathrm{v}))-2.04 \mathrm{v} \end{aligned}$ | M1 <br> B1 <br> A1ft <br> M1 <br> A1 | 5 | For separating the variables and integrating <br> For using $\mathrm{v}=0$ when $\mathrm{x}=0$ <br> Accept any correct form |



| 6 | (i) $\left[1 / 2 \mathrm{~m}^{2}=1 / 2 \mathrm{mv}^{2}+2 \mathrm{mg}\right]$ <br> Speed is $3.13 \mathrm{~ms}^{-1}$ $\left[\mathrm{T}=\mathrm{mv}^{2} / \mathrm{r}\right]$ <br> Tension is 1.96 N | $\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1ft } \end{aligned}$ | 4 | For using the principle of conservation of energy <br> For using Newton's second law horizontally and $a=v^{2} / r$ |
| :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & \text { (ii) } \quad\left[\mathrm{T}-\mathrm{mg} \cos \theta=\mathrm{mv}^{2} / \mathrm{r}\right] \\ & \mathrm{v}^{2}=-2 \mathrm{~g} \cos \theta \\ & 1 / 2 \mathrm{~m} 7^{2}=1 / 2 \mathrm{mv} v^{2}+\mathrm{mg}(2-2 \cos \theta) \\ & {[-2 \mathrm{~g} \cos \theta=49-4 \mathrm{~g}+4 \mathrm{~g} \cos \theta]} \\ & 6 \mathrm{~g} \cos \theta=-9.8 \\ & \theta=99.6 \end{aligned}$ | M1 <br> M1 <br> A1 <br> M1 <br> A1 <br> M1 <br> A1 <br> A1 | 8 | For using Newton's second law radially For using $\mathrm{T}=0$ (may be implied) <br> For using the principle of conservation of energy <br> For eliminating $v^{2}$ <br> May be implied by answer |
|  | ve for candidates who eliminate $v^{2}$ before $\begin{aligned} & \text { (ii) } \quad\left[\mathrm{T}-\mathrm{mg} \cos \theta=\mathrm{mv}^{2} / \mathrm{r}\right] \\ & 1 / 2 \mathrm{~m} 7^{2}=1 / 2 \mathrm{mv} \\ & {[\mathrm{~T}-\mathrm{mg} \cos \theta=\mathrm{mg}(2-2 \cos \theta)} \\ & -2 \mathrm{~g} \cos \theta=49-4 \mathrm{~g}+4 \mathrm{~g} \cos \theta) 2] \\ & 6 \mathrm{~g} \cos \theta=-9.8 \\ & \theta=99.6 \end{aligned}$ | $\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { A1ft } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$ | 8 | For using Newton's second law radially For using the principle of conservation of energy <br> For eliminating $v^{2}$ <br> For using $\mathrm{T}=0$ (may be implied) ft error in energy equation May be implied by answer |


| 7 | $\begin{aligned} & \text { (i) } \quad \mathrm{T}=4 \mathrm{mg}(4+\mathrm{x}-3.2) / 3.2 \\ & {[\mathrm{ma}=\mathrm{mg}-4 \mathrm{mg}(0.8+\mathrm{x}) / 3.2]} \\ & 4 \ddot{x}=-49 \mathrm{x} \end{aligned}$ | $\begin{aligned} & \hline \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$ | 3 | For using Newton's second law AG |
| :---: | :---: | :---: | :---: | :---: |
|  | (ii) Amplitude is 0.8 m <br> Period is $2 \pi / \omega$ s where $\omega^{2}=49 / 4$ <br> Slack at intervals of 1.8 s | B1 <br> B1 <br> M1 <br> A1 | 4 | $($ from $4+A=4.8)$ <br> String is instantaneously slack when shortest ( $4-\mathrm{A}=3.2=\mathrm{L}$ ). Thus required interval length $=$ period. AG |
|  | (iii) $[\mathrm{ma}=-\mathrm{mg} \sin \theta]$ <br> $\mathrm{mL} \ddot{\theta}=-\mathrm{mg} \sin \theta$ <br> For using $\sin \theta \approx \theta$ for small angles and obtaining $\ddot{\theta} \approx$ $-(\mathrm{g} / \mathrm{L}) \theta$ | M1 <br> A1 A1 | 3 | For using Newton's second law tangentially AG |
|  | $\begin{aligned} & \text { (iv) } \quad[\theta=0.08 \cos (3.5 \mathrm{x} 0.25)](=0.05127 . .) \\ & {[\dot{\theta}=-3.5(0.08) \sin (3.5 \mathrm{x} 0.25)} \\ & \left.\dot{\theta}^{2}=12.25\left(0.08^{2}-0.05127 . .^{2}\right)\right] \\ & \dot{\theta}=\mp 0.215 \\ & {[\mathrm{v}=0.215 \mathrm{x} 9.8 / 12.25]} \\ & \text { Speed is } 0.172 \mathrm{~ms}^{-1} \end{aligned}$ | $\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \hline \end{aligned}$ | 5 | For using $\square=\square_{\text {o }} \cos \omega t$ where $\omega^{2}=12.25$ (may be implied by $\dot{\vartheta}=-\omega \square_{\mathrm{o}} \sin \omega \mathrm{t}$ ) For differentiating $\square=\square \cos \omega t$ and using $\dot{\vartheta}$ or for using <br> $\dot{\theta}^{2}=\omega^{2}\left(\theta_{o}{ }^{2}-\theta^{2}\right)$ where $\omega^{2}=12.25$ <br> May be implied by final answer <br> For using $\mathrm{v}=\mathrm{L} \dot{\boldsymbol{\vartheta}}$ and $\mathrm{L}=\mathrm{g} / \omega^{2}$ |

## 4732 Probability \& Statistics 1

Note: "( 3 sfs )" means "answer which rounds to... to 3 sfs". If correct ans seen to $\geq 3 \mathrm{sfs}$, ISW for later rounding Penalise over-rounding only once in paper.

| 1ia | $\begin{aligned} & 5!\text { or }{ }^{5} \mathrm{P}_{5} \\ & =120 \end{aligned}$ | $\begin{array}{\|ll\|} \hline \text { M1 } & \\ \text { A1 } & \\ \hline \end{array}$ |  |
| :---: | :---: | :---: | :---: |
| b | $\begin{aligned} & 4!\text { or }{ }^{4} \mathrm{P}_{4} \text { seen } \\ & 4!\times 2 \\ & 48 \end{aligned}$ | M1 M1dep A1 3 | $\begin{aligned} & \text { or } 2 \times 3 \text { ! or } 2!\times 3 \text { ! or } 2!\times{ }^{3} \mathrm{P}_{3} \\ & 2 \times 3!\times 4 \end{aligned}$ |
| ii | $\begin{aligned} & { }^{1 / 5} \mathrm{C}_{2} \text { or } 1 / 5 \times 1 / 4 \times 2 \text { or } 0.4 \times 0.25 \text { or }^{2} / 5 \mathrm{SP} 2 \\ & =1 / 10 \end{aligned}$ | $\begin{aligned} & \text { Mi } \\ & \text { A1 } 2 \end{aligned}$ | $\begin{aligned} & \text { Allow M1 for }{ }^{3} \mathrm{C}_{2} \text { or } 1 / 5 \times 1 / 4 \text { or }^{\mathrm{T}} / 20 \\ & \\ & \text { or } 1 / 5 \times 1 / 5 \times 2 \text { or }{ }^{1 / 25} \text { oe } \end{aligned}$ |
| Total |  | 7 |  |
| 2 i | $\begin{aligned} & (4 / 5)^{3} \times(1 / 5) \text { oe } \\ & =64 / 625 \text { or } 0.102(3 \mathrm{sfs}) \end{aligned}$ | $\begin{array}{\|ll\|} \hline \text { M1 } & \\ \text { A1 } & 2 \end{array}$ | Allow M1 for ( $\left.{ }^{4} / 5\right)^{4} \times(1 / 5)$ |
| ii | $(4 / 5)^{4}$ alone <br> or $1-\left(1 / 5+4 / 5 x^{1 / 5}+(4 / 5)^{2} x^{1 / 5}+(4 / 5)^{3} x^{1 / 5}\right)$ $=256 / 625 \text { or } 0.410(3 \mathrm{sfs})$ | $\begin{array}{ll} \text { M1 } & \\ \text { A1 } & 2 \end{array}$ | Allow $(4 / 5)^{3}$ or $(4 / 5)^{5}$; not $1-(4 / 5)^{4}$ Allow one term omitted or wrong or "correct" extra <br> Allow 0.41 |
| iii | 5 | B1 1 |  |
| Total |  | 5 |  |
| 3 i | $r=\frac{212-\frac{24 \times 39}{5}}{\sqrt{\left(130-\frac{24^{2}}{5}\right)\left(361-\frac{39^{2}}{5}\right)}}$ | B2 2 | $\frac{24.8}{\sqrt{14.8 \times 56.8}} \text { or } \frac{24.8}{\sqrt{840.64}} \text { or } \frac{24.8}{3.85 \times 7.54} \text { or } \frac{24.8}{29}$ <br> B2 for correct subst in $r$ <br> B1 for correct subst in any $S$ |
| ii | $R=0.7 \text { or }(\mathrm{B})$ <br> Definition of $r_{\mathrm{s}}$ is PMCC for ranks | $\begin{aligned} & \text { B1 } \\ & \text { B1 } 2 \end{aligned}$ | (A) and (B) true: B0B0 dep $1^{\text {st }}$ B1 |
| iii | $\begin{aligned} & r=0.855 \\ & r_{s}=0.7 \end{aligned}$ | $\begin{array}{ll} \text { B1 } & \\ \text { B1 } & 2 \end{array}$ | or "unchanged": B1B1 Interchanged: B1 |
| Total |  | 6 |  |
| 4 i | $\begin{aligned} & 0.4 \times p=0.12 \quad \text { or }{ }^{0.12 / 0.4 \text { or }^{12 / 40}} \text { oe } \\ & p=0.3 \text { oe } \end{aligned}$ | $\begin{array}{\|ll\|} \hline \text { M1 } & \\ \text { A1 } & \\ \hline \end{array}$ |  |
| ii | $0.4 \times(1-$ their 0.3$)$ oe eg $40 / 100 \times 128$ <br> 0.28 or $28 \%$ oe | M1 <br> A1ft 2 | or $0.4-0.12$ or 0.28 or 28 seen Not $0.4 \times 0.88$ unless ans to (i) is 0.12 |
| Total |  | 4 |  |
| 5ia | Binomial stated or implied 0.9806 | $\begin{array}{\|ll\|} \hline \text { B1 } & \\ \text { B1 } & 2 \end{array}$ | by use of tables or $0.2^{a} \times 0.8^{b}, a+b=12$ |
| b | $\begin{aligned} & 0.5583 \text { seen } \\ & 1-0.5583 \\ & =0.442(3 \mathrm{sfs}) \end{aligned}$ | M1 <br> M1 <br> A1 3 | $\begin{aligned} & \text { add } \begin{array}{l} \text { M2 corr terms or } 1 \text {-(add } 3 \text { corr terms): } \\ \text { or } 1-0.7946 \text { or } 0.205 \text { or } 1-0.6774 \text { or } 0.323 \\ \text { or } 1-0.3907 \text { or } 0.609 \\ \text { or add } 9 \text { terms or } 1 \text {-(add } 2 \text { or } 4 \\ \text { terms): M1 } \end{array} \end{aligned}$ |
| ii | $\begin{aligned} & { }^{15} \mathrm{C}_{4} \times 0.3^{4} \times 0.7^{11-1} \\ & =0.219(3 \mathrm{sfs}) \end{aligned}$ | $\begin{aligned} & \text { M2 } \\ & \text { A1 } 3 \end{aligned}$ | ${ }^{15} \mathrm{C}_{4} \times 0.3^{11} \times 0.7^{4}: \mathrm{M} 1$ |
| Total |  | 8 |  |


| 6 i |  | M1 <br> A1 <br> M1 <br> M1 <br> A1 5 | $\begin{aligned} & \geq 2 \text { terms added } \div 3 \text { or } \div 6 \text { etc: M0 } \\ & \geq 2 \text { terms added } \div 3 \text { or } \div 6 \text { etc: M0 } \\ & \text { dep }+ \text { ve result } \\ & (-1.3)^{2} \times 0.2+(-0.3)^{2} \times 0.3+0.7^{2} \times 0.5: \text { M2 } \\ & \text { one term correct: M1 } \end{aligned}$ <br> Use of $Z:$ MR, lose last A1 (2.55, 0.4475) |
| :---: | :---: | :---: | :---: |
| ii | $0.2 \times 0.25+0.3 \times 0.1$ or $0.05+0.03$ alone $=0.08$ oe | $\begin{aligned} & \mathrm{M} 2 \\ & \mathrm{~A} 1 \end{aligned}$ | M1 for one product eg correct $\times 2$ : M1 or clearly ident (1,2), (2,1): M1 |
| iii | $\left.\begin{array}{rl} 0.3 \times 0.1 & +0.3 \times 0.25+0.3 \times 0.65 \\ & +0.25 \times 0.2+0.25 \times 0.5 \end{array}\right)$ $=0.475 \text { or }{ }^{19} / 40 \text { oe }$ | M2 <br> A1 3 | $\begin{aligned} & \text { M1 : any } 3,4 \text { of these prods alone } \\ & \text { or these } 5 \text { prods plus } 1 \text { extra or repeat } \\ & \text { or (ii) }+ \text { prod } \\ & \text { or } 0.3+\text { prod or } 0.25+\text { prod } \\ & \text { or clearly identify } \\ & \quad(1,2)(3,2)(2,2)(2,1)(2,3) \\ & \\ & \text { M2 for } 0.3+(0.2+0.5) \times 0.25 \\ & \text { or } 0.25+(0.1+0.65) \times 0.3 \\ & \text { or } 0.3+0.25-0.3 \times 0.25 \\ & \text { or } 1-(0.2+0.5)(0.1+0.65) \\ & \\ & \text { M1 for }(0.2+0.5)(0.1+0.65) \end{aligned}$ |
| Total |  | 11 |  |
| 7ia | Results or matches are indep Prob of winning is constant | $\begin{array}{ll} \mathrm{B} 1 & \\ \text { B1 } & 2 \end{array}$ | allow "wins" indep; not "trials" indep not "success" |
| ib | No of wins (or losses) | B1 1 |  |
| ii | $\begin{aligned} & { }^{21} \mathrm{C}_{10} p^{10} q^{11}={ }^{21} \mathrm{C}_{9}{ }^{9} q^{12} \\ & \frac{12}{10} p=q \text { or } \frac{12 p(1-p)^{-1}=1 \text { or similar }}{10} \\ & 1.2 p=1-p \text { oe eg } p=0.833(1-p) \\ & \quad \text { or } 352716 p=293930(1-p) \\ & p=5 / 11 \text { or } 0.455(3 \mathrm{sfs}) \text { oe } \end{aligned}$ | M1 <br> M1M1 <br> M1 <br> A1 5 | or $(1-p)$ for $q$ \& allow omit bracket or $352716 p^{10} q^{11}=293930 p^{9} q^{12}$ <br> M1 for ${ }^{12} / 10$ or $6 / 5$ or 1.2 or $5 / 6$ or 0.833 <br> M1 for $p \& q$ cancelled correctly <br> or equiv equn in $p$ or $q$ (cancelled) nos not nec'y cancelled; not alg denom |
| Total |  | 8 |  |


| 8 i | $\begin{aligned} & \mathrm{m}=26.5 \\ & \mathrm{LQ}=22 \\ & \mathrm{UQ}=39 \\ & \mathrm{IQR}=17 \end{aligned}$ | $\begin{gathered} \text { or } 21.5 \\ 40 \\ 18.5 \end{gathered}$ | $\begin{gathered} \text { or } 21.75 \\ 39.5 \\ \\ \hline \end{gathered}$ | B1 <br> M1 <br> A1 3 | M1 for either LQ or UQ <br> A1 must be consistent LQ, UQ\& IQR |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ii | Ave or overall or med or "it" similar <br> Male spread greater or M more varied oe |  |  | B1f <br> B1f 2 | or F med (or ave) higher or F mean less or M \& F both have most in 20s <br> or male range greater or more younger F or more older M |
| iii | Med less (or not) affected by extreme(s) or Mean (more) affected by extreme(s). |  |  | B1 1 | oe; not "anomalies" <br> ignore eg "less accurate" |
| iv | $\begin{aligned} & \frac{\text { Decode last }}{245 / 49} \\ & =5 \\ & \text { mean }=205 \\ & \sqrt{ }\left(9849 / 49-(245 / 49)^{2}\right) \\ & =13.3(3 \mathrm{sfs}) \text { or } 4 \sqrt{ } 11 \\ & \mathrm{sd}=13.3 \text { or } 4 \sqrt{ } 11 \end{aligned}$$\begin{array}{ll} \frac{\text { Decode first }}{245+200 \times 49} \text { or } 10045 & \text { B1 } \\ 10045 / 49 & \text { M1 } \\ =205 & \text { A1 } \\ \Sigma x^{2}=9849+400 \times 10045-49 \times 40000 & \\ & \text { or } 2067849 \end{array} \text { B1 }$ |  |  | M1 <br> A1 <br> B1f <br> M1 <br> A1 <br> B1f 6 | must consistently decode last or first $\begin{aligned} & 200+" 5 " \\ & \text { dep } \sqrt{ }+\mathrm{ve} \end{aligned}$ <br> dep M1 or ans 176; award if not +200 <br> allow ${ }^{445} / 49$ or 9.08 seen <br> dep $\sqrt{ }+$ ve <br> $\Sigma x^{2}$ must be: attempt at $\Sigma x^{2}$ $>9849$ <br> not involve $9849^{2}$ $\operatorname{not}(\Sigma x)^{2} \operatorname{eg} 10045^{2}, 445^{2}$ <br> $\bar{x}$ must be decoded attempt, eg 9.08 |
| Total |  |  |  | 12 |  |
| 9 i | Because growth may depend on pH oe or expt is investigating if $y$ depends on $x$ |  |  | B1 1 | In context. Not $x$ is controlled or indep |
| ii | $\begin{aligned} & S_{x y}=17082.5-66.5 \times 1935 / 8(=997.8125) \\ & S_{x x}=558.75-66.5^{2} / 8 \quad(=5.96875) \\ & b=S_{x y} / S_{x x} \\ & =167(3 \mathrm{ss}) \end{aligned}$ |  |  | $\begin{array}{ll} \mathrm{M} 1 & \\ \mathrm{~A} 1 \\ & \\ \text { M1 } & \\ \text { A1 } & 4 \\ \hline \end{array}$ | Correct sub into any correct $b$ formula <br> or $a=1935 / 8-" 167 " \times 66.5 / 8$ <br> cao NB 3 sfs |
| iii | $\begin{aligned} & y=-1150+167 \times 7 \\ & =19 \text { to } 23 \end{aligned}$ |  |  | $\begin{aligned} & \text { M1 } \\ & \text { A1 } \quad 2 \end{aligned}$ | ft their eqn for M1 only |
| iv | No (or little) relationship or correlation |  |  | B1 1 | or weak or small corr'n. Not "agreement" |
| va | Reliable as $r$ high |  |  | B1 1 | Allow without "interpolation" oe, but must include $r$ high |
| b | Unreliable as extrapolation .-.........ee |  |  | B1 1 | or unreliable as gives a neg value |
| vi | Unreliable (or No) because $r$ near 0 or because little (or no or small) corr'n (or rel'n) |  |  | B1 1 | or No because Q values vary widely for $\mathrm{pH}=8.5$ |
| Total |  |  |  | 11 |  |

Total 72 marks

## 4733 Probability \& Statistics 2

| 1 | $\begin{aligned} & \frac{80-\mu}{\sigma}=\Phi^{-1}(0.95)=1.645 \\ & \frac{\mu-50}{\sigma}=\Phi^{-1}(0.75)=0.674(5) \\ & \text { Solve simultaneously } \\ & \mu=58.7, \sigma=12.9 \end{aligned}$ | M1   <br> B1   <br> A1   <br> M1   <br> A1   <br> A1 $\mathbf{6}$  <br>    | Standardise once with $\Phi^{-1}$, allow $\sigma^{2}$, cc <br> Both $1.645(1.64,1.65)$ and [ $0.674,0.675]$, ignore signs <br> Both equations correct apart from wrong $z$, not $1-1.645$ <br> Solve two standardised equations <br> $\mu$, a.r.t 58.7 <br> $\sigma$, a.r.t. $12.9\left[\operatorname{not} \sigma^{2}\right] \quad\left[\sigma^{2}:\right.$ M1B1A0M1A1A0] |
| :---: | :---: | :---: | :---: |
| 2 (i) | Let $R$ denote the number of choices which are 500 or less. $\begin{aligned} & R \sim \mathrm{~B}\left(12, \frac{5}{6}\right) \\ & \mathrm{P}(R=12)=\left(\frac{5}{6}\right)^{12} \quad[=0.11216] \\ & =\mathbf{0 . 1 1 2} \end{aligned}$ | M1  <br> M1  <br> A1 3 | $\mathrm{B}\left(12, \frac{5}{6}\right.$ ) stated or implied, allow 501/600 etc $p^{12}$ or $q^{12}$ or equivalent <br> Answer, a.r.t. 0.112 $\left[\text { SR: } \frac{500}{600} \times \frac{499}{599} \times \frac{498}{598} \times \ldots ; 0.110: \quad\right. \text { M1A1] }$ <br> [M1 for 0.910 or 0.1321 or vague number of terms] |
| (ii) | Method unbiased; unrepresentative by chance | $\begin{array}{lll}  & \\ \text { B1 } & \\ \text { B1 } & \mathbf{2} \end{array}$ | State that method is unbiased <br> Appropriate comment (e.g. "not unlikely") <br> [SR: partial answer, e.g. not necessarily biased: B1] |
| 3 (i) | $\begin{aligned} & \mathrm{P}(\leq 1)=0.0611 \\ & \mathrm{P}(\geq 9)=1-\mathrm{P}(\leq 8)=1-0.9597 \\ & =0.0403 \\ & 0.0611+0.0403 \quad[=0.1014] \\ & =10.1 \% \end{aligned}$ | B1  <br> M1  <br> A1  <br> M1  <br> A1 $\mathbf{5}$ | 0.0611 seen <br> Find $\mathrm{P}(\geq 9)$, allow 8 or 10 [ $0.0866,0.0171]$ 0.0403 correct <br> Add probabilities of tails, or 1 tail $\times 2$ <br> Answer [10.1, 10.2] \% or probability |
| (ii) | $\begin{aligned} & \mathrm{P}(2 \leq G \leq 8) \\ & =0.8944-0.0266 \quad[=0.8678] \\ & =\mathbf{0 . 8 6 8} \end{aligned}$ | M1  <br> M1  <br> A1 $\mathbf{3}$ | Attempt at $\mathrm{P}(2 \leq G \leq 8)$, not isw, allow $1 \leq G \leq 9$ etc $\mathrm{Po}(5.5)$ tables, $\mathrm{P}(\leq$ top end $)-\mathrm{P}(\leq$ bottom end $)$ Answer, a.r.t. 0.868, allow \% |
| $4 \quad$ (i) | $\begin{aligned} & \hat{\mu}=\bar{y}=\frac{3296.0}{40}=82.4 \\ & \frac{286800.4}{40}-82.4^{2}[=380.25] \\ & S^{2} \times \frac{40}{39} ;=390 \end{aligned}$ | B1 <br> M1 <br> M1 A1 $4$ | Mean 82.4, c.a.o. <br> Use correct formula for biased estimate Multiply by $n /(n-1)$ <br> [SR: all in one, M2 or M0] <br> Variance 390, c.a.o. |
| (ii) | $\begin{aligned} & \Phi\left(\frac{60-82.4}{\sqrt{390}}\right)=\Phi(-1.134) \\ & =1-0.8716=\mathbf{0 . 1 2 8} \end{aligned}$ | $\begin{array}{ll} \text { Mi } \\ \text { A1 } & 2 \end{array}$ | Standardise, allow 390 , cc or biased estimate, + - , do not allow $\sqrt{ } n$ <br> Answer in range [0.128, 0.129] |
| (iii) | No, distribution irrelevant | B1 1 | "No" stated or implied, any valid comment |
| 5 (i) | $\mathrm{H}_{0}: \mu=500$ where $\mu$ denotes <br> $\mathrm{H}_{1}: \mu<500$ the population mean <br> $\alpha: \quad z=\frac{435-500}{100 / \sqrt{4}}=-1.3$ <br> Compare - 1.282 | $\begin{aligned} & \hline \text { B2 } \\ & \\ & \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \end{aligned}$ | Both hypotheses stated correctly <br> [SR: 1 error, B1, but $\bar{x}$ etc: B0] <br> Standardise, use $\sqrt{ } 4$, can be + $z=-1.3$ (allow -1.29 from cc) or $\Phi(z)=0.0968(.0985)$ <br> Compare $z \&-1.282$ or $p(<0.5) \& 0.1$ or equivalent |
|  | $\beta: \quad$$500-1.282 \times 100 / \sqrt{4}$  <br>  $=435.9 ;$ compare 435 | $\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \sqrt{ } ; \mathrm{B} 1 \end{aligned}$ | $500-z \times 100 / \sqrt{4}$, allow $\sqrt{\text { errors, any } \Phi^{-1} \text {, must be - }}$ CV correct, $\sqrt{ }$ on their $z ; 1.282$ correct and compare |
|  | Reject $\mathrm{H}_{0}$ <br> Significant evidence that number of visitors has decreased | $\begin{array}{ll} \text { M1 } \sqrt{2} \\ \text { A1 } \sqrt{ } & 7 \end{array}$ | Correct deduction, needs $\sqrt{ } 4, \mu=500$, like-with-like Correct conclusion interpreted in context |
| (ii) | CLT doesn't apply as $n$ is small So need to know distribution | $\begin{array}{ll} \hline \text { M1 } \\ \text { B1 } & \mathbf{2} \\ \hline \end{array}$ | Correct reason [" $n$ is small" is sufficient] Refer to distribution, e.g. "if not normal, can't do it" |


| 6 (i) | (a) $1-0.8153$ <br> $=0.1847$ <br> (b) $\quad \begin{aligned} & 0.8153-0.6472 \\ & \\ & =0 . \quad 0.168\end{aligned}$ | M1  <br> A1 $\mathbf{2}$ <br> M1  <br> A1 $\mathbf{2}$ | Po(3) tables, " 1 -" used, e.g. 0.3528 or 0.0839 <br> Answer 0.1847 or 0.185 <br> Subtract 2 tabular values, or formula $\left[\mathrm{e}^{-3} 3^{4} / 4\right.$ !] Answer a a.r.t. 0.168 |
| :---: | :---: | :---: | :---: |
| (ii) | $\begin{aligned} & \mathrm{N}(150,150) \\ & 1-\Phi\left(\frac{165.5-150}{\sqrt{150}}\right) \\ & =1-\Phi(1.266)=\mathbf{0 . 1 0 3} \end{aligned}$ | $\begin{array}{ll} \text { B1 } & \\ \text { B1 } & \\ \text { M1 } & \\ \text { A1 } & \\ \text { A1 } & \mathbf{5} \end{array}$ | Normal, mean $3 \times 50$ stated or implied Variance or SD $=3 \times 50$, or same as $\mu$ Standardise 165 with $\lambda, \sqrt{ } \lambda$ or $\lambda$, any or no cc $\sqrt{ } \lambda$ and 165.5 <br> Answer in range [0.102, 0.103] |
| (iii) | (a) The sale of one house does not affect the sale of any others <br> (b) The average number of houses sold in a given time interval is constant |  | Relevant answer that shows evidence of correct understanding [but not just examples] <br> Different reason, in context <br> [Allow "constant rate" or "uniform" but not "number constant", "random", "singly", "events".] |
| 7 (i) | $\begin{aligned} & \int_{0}^{2} k x d x=\left[\frac{k x^{2}}{2}\right]_{0}^{2}=2 k \\ & =1 \text { so } k=1 / 2 \end{aligned}$ | $\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$ | Use $\int_{0}^{2} k x d x=1$, or area of triangle Correctly obtain $k=1 / 2 \mathbf{A G}$ |
| (ii) |  | $\begin{array}{ll} \text { B1 } & \\ \text { B1 } & \mathbf{2} \end{array}$ | Straight line, positive gradient, through origin Correct, some evidence of truncation, no need for vertical |
| (iii) | $\begin{aligned} & \int_{0}^{2} \frac{1}{2} x^{2} d x=\left[\frac{1}{6} x^{3}\right]_{0}^{2}=\frac{4}{3} \\ & \int_{0}^{2} \frac{1}{2} x^{3} d x=\left[\frac{1}{8} x^{4}\right]_{0}^{2}[=2] \\ & 2-\left(\frac{4}{3}\right)^{2}=\frac{2}{9} \end{aligned}$ | M1  <br> A1  <br> M1  <br> M1  <br> A1 $\mathbf{5}$ | Use $\int_{0}^{2} k x^{2} d x ; \frac{4}{3}$ seen or implied <br> Use $\int_{0}^{2} k x^{3} d x$; subtract their mean ${ }^{2}$ <br> Answer $\frac{2}{9}$ or a.r.t. 0.222 , c.a.o. |
| (iv) |  | $\begin{array}{ll} \hline \text { M1 } \\ \text { A1 } \sqrt{ } & \mathbf{2} \end{array}$ | Translate horizontally, allow stated, or " 1,2 " on axis One unit to right, 1 and 3 indicated, nothing wrong seen, no need for vertical or emphasised zero bits [If in doubt as to $\rightarrow$ or $\downarrow$, M0 in this part] |
| (v) | $\begin{aligned} & \frac{7}{3} \\ & \frac{2}{9} \end{aligned}$ | $\begin{array}{ll} \text { B1 } \sqrt{ } \\ \text { B1 } \sqrt{ } \end{array}$ | Previous mean +1 <br> Previous variance <br> [If in doubt as to $\rightarrow$ or $\downarrow$, B1B1 in this part] |


| 8 (i) | $\begin{aligned} & \mathrm{H}_{0}: p=0.65 \text { OR } p \geq 0.65 \\ & \mathrm{H}_{1}: p<0.65 \\ & \mathrm{~B}(12,0.65) \end{aligned}$ | $\begin{array}{\|l\|} \hline \text { B2 } \\ \text { M1 } \\ \hline \end{array}$ | Both hypotheses correctly stated, in this form [One error (but not $r, x$ or $\bar{x}$ ): B1] $\mathrm{B}(12,0.65)$ stated or implied |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{array}{ll} \alpha: & \mathrm{P}(\leq 6)=0.2127 \\ & \text { Compare } 0.10 \end{array}$ | $\begin{array}{\|l\|} \hline \text { A1 } \\ \text { B1 } \\ \hline \end{array}$ | Correct probability from tables, not $\mathrm{P}(=6)$ Explicit comparison with 0.10 |  |  |  |  |
|  | $\beta: \quad \begin{aligned} & \text { Critical region } \leq 5 ; 6>5 \\ & \text { Probability } 0.0846\end{aligned}$ | $\begin{array}{\|l} \mathrm{B} 1 \\ \mathrm{~A} 1 \\ \hline \end{array}$ | Critical region $\leq 5$ or $\leq 6$ or $\{\leq 4\} \cap\{\geq 11\}$ \& compare 6 Correct probability |  |  |  |  |
|  | Do not reject $\mathrm{H}_{0}$ Insufficient evidence that proportion of population in favour is not at least 65\% | M1V <br> A1 $\sqrt{ }$ | Correct comparison and conclusion, needs correct distribution, correct tail, like-with-like Interpret in context, e.g. "consistent with claim" [SR: N(7.8, 2.73): can get B2M1A0B1M0: 4 ex 7] |  |  |  |  |
| (ii) | Insufficient evidence to reject claim; test and $p / q$ symmetric | $\begin{array}{ll} \text { B1 } \\ \text { B1 } \end{array}$ | Same conclusion as for part (i), don't need context Valid relevant reason, e.g. "same as (i)" |  |  |  |  |
| (iii) | $\begin{aligned} & R \sim \mathrm{~B}(2 n, 0.65), \mathrm{P}(R \leq n)>0.15 \\ & \mathrm{~B}(18,0.65), p=0.1391 \end{aligned}$ <br> Therefore $n=9$ | M1 <br> A1 <br> A1 <br> A1 <br> 4 | $\mathrm{B}(2 n, 0.65), \mathrm{P}(R \leq n)>0.15$ stated or implied Any probability in list below seen $p=0.1391$ picked out (i.e., not just in a list of $>2$ ) Final answer $n=9$ only <br> [SR $<n$ : M1A0, $n=4,0.1061 \mathrm{~A} 1 \mathrm{~A} 0]$ <br> [SR 2-tail: M1A1A0A1 for 15 or 14] <br> [SR: 9 only, no working: M1A1] <br> [MR B(12, 0.35): M1A0, $n=4,0.1061 \mathrm{~A} 1 \mathrm{~A} 0]$ |  |  |  |  |
|  |  |  | 3 0.3529 <br> 4 0.2936 <br> 5 0.2485 <br> 6 0.2127 | 7 8 9 10 | $\begin{aligned} & 0.1836 \\ & 0.1594 \\ & 0.1391 \\ & 0.1218 \end{aligned}$ | 12 13 14 15 | $\begin{aligned} & 0.0942 \\ & 0.0832 \\ & 0.0736 \\ & 0.0652 \end{aligned}$ |

## 4734 Probability \& Statistics 3



\begin{tabular}{|c|c|c|c|}
\hline 5(i)

(ii) \& \begin{tabular}{l}
Population of differences is normal $\mathrm{H}_{0}: \mu_{A}=\mu_{B}, \mathrm{H}_{1}: \mu_{A}<\mu_{B}$ where $\mu_{A}$ and $\mu_{B}$ denote the population means
$$
\begin{gathered}
\bar{x}_{D}=3.222 \\
s_{D}=5.019
\end{gathered}
$$
$$
\begin{aligned}
& t=3.222 /(5.019 / 3) \\
& =1.926 \\
& \mathrm{CV}=1.860 \\
& 1.926>1.860
\end{aligned}
$$ <br>
Reject $\mathrm{H}_{0}$, there is evidence that brand $A$ takes less time than brand $B$ <br>
One valid reason

 \& 

B1 <br>
B1 <br>
B1 <br>
M1A1 <br>
M1 <br>
A1 <br>
B1 <br>
M1 <br>
A1 10
$\qquad$ <br>
B1 1 (11)

 \& 

Not "independent"

$$
\text { Or } \mu_{D}=0, \mu_{D}>0
$$ <br>

From formula, or B2 from calculator <br>
Accept 1.93. M1A0 if $t=-1.926$ <br>
Data are clearly paired <br>
Data not independent
\end{tabular} <br>

\hline 6(i) \& $$
\begin{array}{|l|}
\hline 37 \times 58 / 120 \\
17.883 . ., 17.88 \mathrm{AG}
\end{array}
$$ \& \[

$$
\begin{aligned}
& \text { M1 } \\
& \text { A1 } 2
\end{aligned}
$$
\] \& Or equivalent <br>

\hline (ii) \& | $\mathrm{H}_{0}$ : Gender and shade are independent $\left(\mathrm{H}_{1}\right.$ :--are not independent $3.02^{2}\left(14.02^{-1}+14.98^{-1}\right)+$ $6.12^{2}\left(17.88^{-1}+19.12^{-1}\right)$ $+3.1^{2}\left(26.1^{-1}+27.9^{-1}\right)$ $=6.03$ |
| :--- |
| EITHER: CV 5.991 |
| $6.03>5.991$, reject $\mathrm{H}_{0}$ and accept that gender and shade are not independent OR: $\mathrm{P}\left(\chi^{2}>6.03\right)=0.049$ $<0.05$, reject $\mathrm{H}_{0}$ and accept that gender and shade are not independent | \& | B1 |
| :--- |
| M1 |
| A1 |
| A1 |
| B1 |
| M1 |
| A1 $\sqrt{ } 7$ |
| B1 |
| M1 |
| A1 $\sqrt{ }$ | \& | At least two correct |
| :--- |
| All correct |
| Ft $X^{2}$. Can be assertive. $\mathrm{Ft} X^{2}$ | <br>


\hline (iii) \& |  $\mathrm{G}_{1}$ $\mathrm{G}_{2}$ $\mathrm{G}_{3}$ <br> O 29 37 54 <br> E 40 40 40$121 / 40+9 / 40+196 / 40$$=8.15$ |
| :--- |
| Using $\mathrm{df}=2$ |
| $2.5 \%$ tables, $1.7 \%$ calculator | \& | M1 |
| :--- |
| A1 |
| M1 |
| A1 |
| M1 |
| A1 6 (15) | \& For combining <br>

\hline
\end{tabular}



## 4736 Decision Mathematics 1



| 2 | (i) |  | M1 <br> A1 B1 | A connected graph with nine vertices labelled 1 to 9 <br> Correct graph <br> Stating 4 | [3] |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | (ii) | Neither <br> It has four odd nodes <br> The nodes $2,4,6,8$ each have three arcs joined to them whereas an Eulerian graph has no odd nodes and a semiEulerian graph has exactly two odd nodes | M1 A1 | 'Neither', together with an attempt at a reason <br> A correct reference to the number of odd nodes for this graph. Be careful about whether 'odd' refers to the parity or the value. <br> However, just defining Eulerian and semiEulerian, without reference to this graph, is not enough | [2] |
|  |  |  |  | Total = | 5 |

ANSWERED ON INSERT

| 3 | (i) |  | M1 <br> A1 <br> M1 <br> A1 <br> B1 | Using Kruskal: <br> Not selecting $A C$ and $D F$ <br> Selecting correct arcs in list, or implied $(16+18+21+35+46+50$, in this order with no others, can imply M1, A1) <br> Drawing a spanning tree for these six vertices Correct (minimum) spanning tree drawn 186 (cao) | [5] |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | (ii) | Delete $B G$ from spanning tree $186-46=140$ <br> Two shortest arcs from $G$ are $B G$ and $E G$ $140+46+55=241$ <br> Lower bound $=241$ | B1 <br> M1 <br> A1 | Correct working for wrong vertex deleted can score $\mathrm{B} 1, \mathrm{M} 1, \mathrm{~A} 0$ <br> Weight of MST on reduced network (ft from part (i) <br> Adding two shortest arcs to MST 241 (cao) | [3] |
|  | (iii) | $\begin{aligned} & A-D-C-F-G-\ldots \text { or } 16+18+21+58+\ldots \\ & A-D-C-F-G-B-E-A \\ & \text { Upper bound }=274 \end{aligned}$ | $\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \end{aligned}$ | Using nearest neighbour Correct closed tour listed, not just weights added 274 (cao) | 3] |
| Total $=11$ |  |  |  |  |  |

ANSWERED ON INSERT


| (ii) $)$ | The quickest journey time from Jenny's house <br> to the meeting venue | B1 | Quickest journey / least travel time <br> or equivalent | [1] |
| :---: | :--- | :--- | :--- | :--- |
| (iii) | Does not allow for waiting for connections <br> There may be delays at the airport <br> She may not want to fly because of the 'carbon <br> footprint' <br> She may want to choose the cheapest route <br> rather than the quickest route <br> She may not like flying <br> She may want to see her friend <br> She may want to break the journey overnight | B1 | Any reasonable suggestion for why <br> she may not want to use the <br> drive/fly/underground route or why <br> she may want to use a different route <br> Any second reasonable suggestion | B1 |




| $F=N \div B$ For reference only <br> $G=\operatorname{INT}(F)$  <br> $H=B \times G$  <br> $C=N-H$  <br> $N=G$  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7 | (i) | $\begin{gathered} F \\ 2.5 \\ 1 \\ 0.5 \end{gathered}$ | G <br> 2 <br> 1 <br> 0 | H <br> 4 <br> 2 <br> 0 | C <br> 1 <br> 0 <br> 1 | $N$ <br> 2 <br> 1 <br> 0 | $\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$ | A reasonable attempt at first pass (presented in any form) $F=2.5$ and $G=2$ <br> $H=4$ (or double their $G$ value) and $C=5$ - their $H$ <br> $F, G, H, C$ and $N$ correct for second pass ( ft their $N$ value) <br> $F, G, H, C$ and $N$ correct for third pass (ft their $N$ value) | [5] |
|  | (ii) | $\begin{gathered} \hline F \\ -2.5 \\ -1.5 \\ -1 \\ -0.5 \\ -0.5 \end{gathered}$ <br> Does n | $\begin{gathered} \hline G \\ -3 \\ -2 \\ -1 \\ -1 \\ -1 \\ \\ \\ \\ \hline \end{gathered}$ | $\begin{aligned} & \hline H \\ & -6 \\ & -4 \\ & -2 \\ & -2 \\ & -2 \end{aligned}$ | $\begin{aligned} & \hline C \\ & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$ | $\begin{aligned} & \hline N \\ & -3 \\ & -2 \\ & -1 \\ & -1 \\ & -1 \end{aligned}$ | M1 <br> M1 d <br> A1 <br> B1 | A reasonable attempt <br> First pass correct (or implied) <br> Reaching two lines with the same value for $G$ <br> If described in words only, then M1 for a correct statement; M1 d for all correct statements (sufficient to guarantee result), and A1 for convincingly correct explanation of how they know these to be true and why the result follows <br> Saying 'does not stop', or equivalent | [4] |
|  | (iii) | $F$ 3.7 0.3 <br> 3.7 0.3 <br> 0.3 <br> The fir second the hun | $\begin{aligned} & \hline G \\ & 3 \\ & 0 \end{aligned}$ <br> alue <br> ue is <br> ds d | H <br> 30 <br> 0 <br> un <br> tens <br> and | C 7 3 <br> git o the | N 3 0 <br> he value is | M1 <br> A1 <br> M1 <br> A1 | First pass correct All correct <br> Outputs are digits of $N$ In reverse order | [4] |
|  |  |  |  |  |  |  |  | Total $=$ | 13 |

## 4737 Decision Mathematics 2

| 1 | (i) |  | $\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$ | Any three stars paired to the correct rooms <br> All correct $\begin{array}{ll} A \rightarrow 4,6 & D \rightarrow 3,4,5 \\ B \rightarrow 2,3,5 & E \rightarrow 5,6 \\ C \rightarrow 1,2 & F \rightarrow 4 \end{array}$ | [2] |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | (ii) | Faye | B1 <br> B1 | Accept $F$ <br> Incomplete matching shown correctly on a second diagram (need not see other arcs) <br> Arc $F \rightarrow 1$ must NOT be shown as part of the matching | [2] |
|  | (iii) | $F=4-A=6-E=5-D=3-B=2-C=1$  <br>   <br> Arnie $=$ Room 6 Diana $=$ Room 3 <br> Brigitte $=$ Room 2 Edward $=$ Room 5 <br> Charles $=$ Room 1 Faye $=$ Room 4 | $\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \end{aligned}$ | This path indicated clearly <br> This matching listed in any form (but NOT just shown as a bipartite graph) | [2] |





## ANSWERED ON INSERT

| 3 | (i) | Stage <br> 1 <br> 2 <br> 3 | State <br> 0 <br> 0 <br> 1 <br> 2 <br> 0 <br>  <br>  | Action <br> 0 <br> 0 <br> 0 <br> 0 <br> 0 <br> 1 <br> 1 <br> 2 <br> 0 <br> 2 <br> 0 <br> 1 <br> 2 | Working <br> 1 <br> 3 <br> 2 <br> 2 <br> $(4, \mathbf{1})=\mathbf{4}$ <br> $(2, \mathbf{3})=\mathbf{3}$ <br> $(3, \mathbf{3})=\mathbf{3}$ <br> $(5,2)=\mathbf{5}$ <br> $(2, \mathbf{1})=\mathbf{2}$ <br> $(4,2)=\mathbf{4}$ <br> $(5, \mathbf{3})=\mathbf{5}$ <br> $(3, \mathbf{3})=\mathbf{3}$ <br> $(1, \mathbf{2})=\mathbf{2}$ | Minimax <br> 13 <br> 3 <br> 2 <br> 3 <br> 3 <br> 2 <br>  <br> 2 | B1 <br> M1 <br> M1 <br> A1 <br> M1 <br> A1 | Minimax column for stage 1 shows 1,3,2 identified in some way $1,3,2$ transferred to working column for stage 2 correctly Calculating maximum values in working column for stage 2 <br> Minimax column for stage 2 shows 3, 3, 2 identified in some way (cao) Calculating maximum values in working column for stage 3, correct method Minimax column for stage 3 shows 2 identified in some way (cao) | [4] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | (ii) | Minim Minim | value route | ; $; 0$ ) or in re | ) - $(1 ; 0)$ erse) | $-(0 ; 0)$ | $\begin{aligned} & \mathrm{B} 1 \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$ | 2, cao <br> Tracing their route (whatever problem solved) This route from correct working (using network $\Rightarrow \mathrm{M} 0$ ) | [3] |
|  | (iii) | $(3 ; 0)$ |  | $4$ |  | $(0 ; 0)$ | B1 <br> M1 <br> A1 | All vertices labelled correctly <br> Arcs correct, need not be directed Condone stage boundaries shown <br> Arc weights correct (be generous in interpretation of which weight is attached to which arc) | [3] |

ANSWERED ON INSERT

| 4 | (i) | A single source that joins to $S_{1}$ and $S_{2}$ Directed arcs with weights of at least 90 and 110 , respectively <br> $T_{1}$ and $T_{2}$ joined to a single sink Directed arcs with weights of at least 100 and 200 , respectively | B1 <br> B1 | Condone no directions shown <br> Condone no directions shown | [2] |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | (ii) | If $A E$ and $B E$ were both full to capacity there would be 50 gallons per hour flowing into $E$, but the most that can flow out of $E$ is 40 gallons per hour. | $\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$ | Considering what happens at $E$ (50 into $E$ ) At most 40 out | [2] |
|  | (iii) | $40+60+60+140=300$ gallons per hour | B1 | 300 | [1] |
|  | (iv) | $\begin{aligned} & 30+20+30+20+40+40+20+40 \\ & =240 \text { gallons per hour } \end{aligned}$ | $\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$ | Evidence of using correct cut 240 | [2] |
|  | (v) | A feasible flow through network Flow $=200$ gallons per hour Cut through arcs $S_{1} A, S_{1} B, S_{1} C, S_{2} B, S_{2} C$ and $S_{2} D$ or cut $X=\left\{S_{1}, S_{2}\right\}, Y=\{A, B, C, D, E$, $\left.F, G, T_{1}, T_{2}\right\}$ | $\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \end{aligned}$ | Cut indicated in any way <br> (May be on diagram for part (i)) | [3] |
|  | (vi) | Flows into $C$ go to $C_{\mathrm{IN}}$, arc of capacity 20 from $C_{\text {IN }}$ to $C_{\text {Out }}$, and flows out of $C$ go from $C_{\text {out }}$. <br> $\operatorname{Cut} X=\left\{S_{1}, S_{2}, C_{\text {IN }}\right\}$ or $X=\left\{S_{1}, S_{2}, C_{\text {IN }}, D\right\}$ shows max flow $=140$ gallons per hour | B1 <br> B1 <br> B1 <br> B1 | May have working or cut shown on diagram <br> Into $C\left(S_{1}=40, S_{2}=40, D=20\right)$ <br> Through $C$ <br> Out of $C(F=60, G=60)$ <br> 140 (cut not necessary) | [4] |
|  |  |  |  | Total $=$ | 14 |

ANSWERED ON INSERT

| 5 | (i) | Activity <br> $A$ <br> $B$ <br> $C$ <br> $D$ <br> $E$ <br> $F$ <br> $G$ <br> $H$ <br> $I$ <br> $J$ | Duration <br> (days) <br> 8 <br> 6 <br> 4 <br> 4 <br> 2 <br> 3 <br> 4 <br> 5 <br> 3 <br> 5 | Immediate <br> predecessor <br> - <br> - <br> - <br> $\boldsymbol{A}$ <br> $\boldsymbol{A} \boldsymbol{B}$ <br> $\boldsymbol{A} \boldsymbol{B}$ <br> $\boldsymbol{D}$ <br> $\boldsymbol{D} \boldsymbol{F} \boldsymbol{F}$ <br> $\boldsymbol{F}$ <br> $\boldsymbol{C} \boldsymbol{F}$ | B1 B1 B1 | Precedences correct for $A, B, C, D$ <br> Precedences correct for $E, F, G$ <br> Precedences correct for $H, I, J$ | [3] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | (ii) | Minimum <br> Critical act |  |  | M1 <br> A1 <br> M1 <br> A1 <br> B1 <br> B1 | Forward pass, no more than one independent error <br> Forward pass correct (cao) <br> Backward pass, no more than one independent error Backward pass correct (cao) <br> 17, cao <br> AD H, cao | [4] |
|  | (iii) | II |  |  | M1 <br> A1 | ANSWERED ON GRAPH PAPER <br> A plausible histogram, with no holes or overhanging blocks <br> Correct shape | [2] |
|  | (iv) | Example: <br> $\operatorname{Start} A$ and Start $D$ and Then, for e day 13 , and | as before $F$ as before ample, star and $J$ on | delay $C$ to day delay $E$ to day on day $12, H$ 16 | $\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$ | Precedences not violated, durations correct <br> Dealing with $A, B$ and $C$ <br> Dealing with $D, E$ and $F$ <br> Dealing with $G, H I$ and $J$ <br> A valid solution using 6 workers for 21 days | [4] |
|  |  |  |  |  |  | Total $=$ | 15 |

## Grade Thresholds

Advanced GCE Mathematics (3890-2, 7890-2) January 2008 Examination Series

Unit Threshold Marks

| 7892 |  | Maximum | A | B | C | D | E | U |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4721 | Raw | 72 | 58 | 50 | 42 | 35 | 28 | 0 |
|  | UMS | 100 | 80 | 70 | 60 | 50 | 40 | 0 |
| 4722 | Raw | 72 | 60 | 52 | 45 | 38 | 31 | 0 |
|  | UMS | 100 | 80 | 70 | 60 | 50 | 40 | 0 |
| 4723 | Raw | 72 | 51 | 44 | 37 | 31 | 25 | 0 |
|  | UMS | 100 | 80 | 70 | 60 | 50 | 40 | 0 |
| 4724 | Raw | 72 | 57 | 49 | 42 | 35 | 28 | 0 |
|  | UMS | 100 | 80 | 70 | 60 | 50 | 40 | 0 |
| 4725 | Raw | 72 | 56 | 49 | 42 | 36 | 30 | 0 |
|  | UMS | 100 | 80 | 70 | 60 | 50 | 40 | 0 |
| 4726 | Raw | 72 | 49 | 43 | 37 | 31 | 25 | 0 |
|  | UMS | 100 | 80 | 70 | 60 | 50 | 40 | 0 |
| 4727 | Raw | 72 | 55 | 48 | 41 | 34 | 27 | 0 |
|  | UMS | 100 | 80 | 70 | 60 | 50 | 40 | 0 |
| 4728 | Raw | 72 | 59 | 52 | 45 | 38 | 31 | 0 |
|  | UMS | 100 | 80 | 70 | 60 | 50 | 40 | 0 |
| 4729 | Raw | 72 | 57 | 49 | 41 | 33 | 25 | 0 |
|  | UMS | 100 | 80 | 70 | 60 | 50 | 40 | 0 |
| 4730 | Raw | 72 | 50 | 43 | 36 | 29 | 22 | 0 |
|  | UMS | 100 | 80 | 70 | 60 | 50 | 40 | 0 |
| 4732 | Raw | 72 | 55 | 48 | 41 | 34 | 27 | 0 |
|  | UMS | 100 | 80 | 70 | 60 | 50 | 40 | 0 |
| 4733 | Raw | 72 | 55 | 48 | 41 | 34 | 28 | 0 |
|  | UMS | 100 | 80 | 70 | 60 | 50 | 40 | 0 |
| 4734 | Raw | 72 | 52 | 45 | 38 | 31 | 25 | 0 |
|  | UMS | 100 | 80 | 70 | 60 | 50 | 40 | 0 |
| 4736 | Raw | 72 | 57 | 51 | 45 | 40 | 35 | 0 |
|  | UMS | 100 | 80 | 70 | 60 | 50 | 40 | 0 |
| 4737 | Raw | 72 | 59 | 52 | 45 | 39 | 33 | 0 |
|  | UMS | 100 | 80 | 70 | 60 | 50 | 40 | 0 |

## Specification Aggregation Results

Overall threshold marks in UMS (ie after conversion of raw marks to uniform marks)

|  | Maximum <br> Mark | A | B | C | D | E | U |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{3 8 9 0}$ | 300 | 240 | 210 | 180 | 150 | 120 | 0 |
| $\mathbf{3 8 9 1}$ | 300 | 240 | 210 | 180 | 150 | 120 | 0 |
| $\mathbf{3 8 9 2}$ | 300 | 240 | 210 | 180 | 150 | 120 | 0 |
| $\mathbf{7 8 9 0}$ | 600 | 480 | 420 | 360 | 300 | 240 | 0 |
| $\mathbf{7 8 9 1}$ | 600 | 480 | 420 | 360 | 300 | 240 | 0 |
| $\mathbf{7 8 9 2}$ | 600 | 480 | 420 | 360 | 300 | 240 | 0 |

The cumulative percentage of candidates awarded each grade was as follows:

|  | A | B | C | D | E | U | Total Number of <br> Candidates |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{3 8 9 0}$ | 25.5 | 49.6 | 70.9 | 84.3 | 96.0 | 100 | 478 |
| $\mathbf{3 8 9 2}$ | 28.6 | 71.4 | 100 | 100 | 100 | 100 | 7 |
| $\mathbf{7 8 9 0}$ | 33.0 | 58.3 | 79.1 | 92.2 | 97.4 | 100 | 115 |
| $\mathbf{7 8 9 2}$ | 11.1 | 44.4 | 100 | 100 | 100 | 100 | 9 |

For a description of how UMS marks are calculated see:
http://www.ocr.org.uk/learners/ums results.html
Statistics are correct at the time of publication.

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

## www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee
Registered in England


Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

